Analysis of E3SMv2 Model Output#
Overview#
This workflow example showcases how to use UXarray to analyze the unstructured grid output from the Energy Exascale Earth System Model (E3SM) directly without needing to perform any regridding operations.
Imports#
This notebook requires the following packages to be installed in the notebook environment. cmocean
is downloaded for pretty colormaps.
mamba install -c conda-forge uxarray cmocean
import warnings
warnings.filterwarnings("ignore")
from dask.distributed import Client, LocalCluster
import uxarray as ux
import cartopy.crs as ccrs
import geoviews as gv
import geoviews.feature as gf
import holoviews as hv
import cmocean
import glob
import sys
import panel as pn
import dask.distributed
# Set-up for HoloViz plots
hv.extension("matplotlib")
features = (
gf.coastline(scale="110m", projection=ccrs.PlateCarree())
* gf.borders(scale="110m", projection=ccrs.PlateCarree())
* gf.states(scale="110m", projection=ccrs.PlateCarree())
)
Set up local Dask cluster#
For details about setting up Dask cluster, check out the Load Input Data in Parallel with Dask and UXarray page in the User Guide section.
# cluster = LocalCluster()
# client = Client(cluster)
client = dask.distributed.Client(n_workers=4, threads_per_worker=2)
client
Client
Client-2591eb31-909c-11ef-9aa8-0040a687eb14
Connection method: Cluster object | Cluster type: distributed.LocalCluster |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/rtam/proxy/8787/status |
Cluster Info
LocalCluster
8d39fd3d
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/rtam/proxy/8787/status | Workers: 4 |
Total threads: 8 | Total memory: 235.00 GiB |
Status: running | Using processes: True |
Scheduler Info
Scheduler
Scheduler-81acf6b7-0798-437d-8e6f-db4ba6ca8218
Comm: tcp://127.0.0.1:44071 | Workers: 4 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/rtam/proxy/8787/status | Total threads: 8 |
Started: Just now | Total memory: 235.00 GiB |
Workers
Worker: 0
Comm: tcp://127.0.0.1:33685 | Total threads: 2 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/rtam/proxy/35417/status | Memory: 58.75 GiB |
Nanny: tcp://127.0.0.1:38487 | |
Local directory: /glade/derecho/scratch/rtam/tmp/dask-scratch-space/worker-x8_bv163 |
Worker: 1
Comm: tcp://127.0.0.1:35563 | Total threads: 2 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/rtam/proxy/41551/status | Memory: 58.75 GiB |
Nanny: tcp://127.0.0.1:41043 | |
Local directory: /glade/derecho/scratch/rtam/tmp/dask-scratch-space/worker-tn2iq0ob |
Worker: 2
Comm: tcp://127.0.0.1:44263 | Total threads: 2 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/rtam/proxy/36385/status | Memory: 58.75 GiB |
Nanny: tcp://127.0.0.1:33923 | |
Local directory: /glade/derecho/scratch/rtam/tmp/dask-scratch-space/worker-kw6j787r |
Worker: 3
Comm: tcp://127.0.0.1:39097 | Total threads: 2 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/rtam/proxy/37107/status | Memory: 58.75 GiB |
Nanny: tcp://127.0.0.1:40203 | |
Local directory: /glade/derecho/scratch/rtam/tmp/dask-scratch-space/worker-vsphnj5j |
Data#
Data loaded in this notebook is the output from E3SMv2 that is run for 6 simulated years. The case is an atmosphere-only (AMIP) simulation with present-day control forcing (F2010) at a 1-degree horizontal resolution (ne30pg2), where boundary conditions like sea surface temperatures and sea ice set as default as in the E3SMv2 model and repeat every simulated year.
%%time
# Load multiple files with chunking by time #CHUNK FAIL WITH E3SM IN TIME DIMENSION
data_files = "/glade/campaign/cisl/vast/uxarray/data/e3sm_keeling/ENSO_ctl_1std/unstructured/*.nc"
grid_file = (
"/glade/campaign/cisl/vast/uxarray/data/e3sm_keeling/E3SM_grid/ne30pg2_grd.nc"
)
uxds_e3sm_multi = ux.open_mfdataset(grid_file, glob.glob(data_files), parallel=True)
CPU times: user 11.9 s, sys: 853 ms, total: 12.7 s
Wall time: 25.9 s
uxds_e3sm_multi
<xarray.UxDataset> Size: 37GB Dimensions: (time: 72, n_face: 21600, lev: 72, ilev: 73, cosp_prs: 7, nbnd: 2, cosp_tau: 7, cosp_ht: 40, cosp_sr: 15, cosp_htmisr: 16, cosp_tau_modis: 7, cosp_reffice: 6, cosp_reffliq: 6, cosp_sza: 5, cosp_scol: 10) Coordinates: (12/13) * lev (lev) float64 576B 0.1238 0.1828 0.2699 ... 993.8 998.5 * ilev (ilev) float64 584B 0.1 0.1477 0.218 ... 997.0 1e+03 * cosp_prs (cosp_prs) float64 56B 9e+04 7.4e+04 ... 2.45e+04 9e+03 * cosp_tau (cosp_tau) float64 56B 0.15 0.8 2.45 ... 41.5 100.0 * cosp_scol (cosp_scol) int32 40B 1 2 3 4 5 6 7 8 9 10 * cosp_ht (cosp_ht) float64 320B 1.896e+04 1.848e+04 ... 240.0 ... ... * cosp_sza (cosp_sza) float64 40B 0.0 20.0 40.0 60.0 80.0 * cosp_htmisr (cosp_htmisr) float64 128B 0.0 250.0 ... 1.8e+04 * cosp_tau_modis (cosp_tau_modis) float64 56B 0.15 0.8 ... 41.5 100.0 * cosp_reffice (cosp_reffice) float64 48B 5e-06 1.5e-05 ... 7.5e-05 * cosp_reffliq (cosp_reffliq) float64 48B 4e-06 9e-06 ... 2.5e-05 * time (time) object 576B 0001-02-01 00:00:00 ... 0007-01-0... Dimensions without coordinates: n_face, nbnd Data variables: (12/471) lat (time, n_face) float64 12MB dask.array<chunksize=(1, 21600), meta=np.ndarray> lon (time, n_face) float64 12MB dask.array<chunksize=(1, 21600), meta=np.ndarray> area (time, n_face) float64 12MB dask.array<chunksize=(1, 21600), meta=np.ndarray> hyam (time, lev) float64 41kB dask.array<chunksize=(1, 72), meta=np.ndarray> hybm (time, lev) float64 41kB dask.array<chunksize=(1, 72), meta=np.ndarray> P0 (time) float64 576B 1e+05 1e+05 1e+05 ... 1e+05 1e+05 ... ... soa_c1DDF (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c1SFWET (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c2DDF (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c2SFWET (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c3DDF (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c3SFWET (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray>
- time: 72
- n_face: 21600
- lev: 72
- ilev: 73
- cosp_prs: 7
- nbnd: 2
- cosp_tau: 7
- cosp_ht: 40
- cosp_sr: 15
- cosp_htmisr: 16
- cosp_tau_modis: 7
- cosp_reffice: 6
- cosp_reffliq: 6
- cosp_sza: 5
- cosp_scol: 10
- lev(lev)float640.1238 0.1828 ... 993.8 998.5
- long_name :
- hybrid level at midpoints (1000*(A+B))
- units :
- hPa
- positive :
- down
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- formula_terms :
- a: hyam b: hybm p0: P0 ps: PS
array([1.238254e-01, 1.828292e-01, 2.699489e-01, 3.985817e-01, 5.885091e-01, 8.689386e-01, 1.282995e+00, 1.894352e+00, 2.797027e+00, 4.129833e+00, 5.968449e+00, 8.377404e+00, 1.147379e+01, 1.533394e+01, 1.999634e+01, 2.544470e+01, 3.159325e+01, 3.836628e+01, 4.567120e+01, 5.330956e+01, 6.101518e+01, 6.847639e+01, 7.535534e+01, 8.194628e+01, 8.891054e+01, 9.646667e+01, 1.046650e+02, 1.135600e+02, 1.232110e+02, 1.336822e+02, 1.450433e+02, 1.573699e+02, 1.707441e+02, 1.852549e+02, 2.009989e+02, 2.180810e+02, 2.366148e+02, 2.567237e+02, 2.785416e+02, 3.022136e+02, 3.278975e+02, 3.557641e+02, 3.859990e+02, 4.188035e+02, 4.543958e+02, 4.924686e+02, 5.316395e+02, 5.706249e+02, 6.086438e+02, 6.453200e+02, 6.804980e+02, 7.137046e+02, 7.444748e+02, 7.723628e+02, 7.969527e+02, 8.178688e+02, 8.350952e+02, 8.496612e+02, 8.631764e+02, 8.763706e+02, 8.892227e+02, 9.017118e+02, 9.138175e+02, 9.255197e+02, 9.367990e+02, 9.476362e+02, 9.580128e+02, 9.679111e+02, 9.773141e+02, 9.862053e+02, 9.937570e+02, 9.984964e+02])
- ilev(ilev)float640.1 0.1477 0.218 ... 997.0 1e+03
- long_name :
- hybrid level at interfaces (1000*(A+B))
- units :
- hPa
- positive :
- down
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- formula_terms :
- a: hyai b: hybi p0: P0 ps: PS
array([1.000000e-01, 1.476508e-01, 2.180076e-01, 3.218901e-01, 4.752733e-01, 7.017450e-01, 1.036132e+00, 1.529858e+00, 2.258847e+00, 3.335207e+00, 4.924460e+00, 7.012439e+00, 9.742370e+00, 1.320520e+01, 1.746267e+01, 2.253000e+01, 2.835939e+01, 3.482711e+01, 4.190545e+01, 4.943694e+01, 5.718218e+01, 6.484818e+01, 7.210460e+01, 7.860608e+01, 8.528648e+01, 9.253461e+01, 1.003987e+02, 1.089312e+02, 1.181888e+02, 1.282332e+02, 1.391312e+02, 1.509554e+02, 1.637844e+02, 1.777038e+02, 1.928061e+02, 2.091918e+02, 2.269702e+02, 2.462594e+02, 2.671880e+02, 2.898952e+02, 3.145321e+02, 3.412629e+02, 3.702654e+02, 4.017327e+02, 4.358743e+02, 4.729174e+02, 5.120198e+02, 5.512593e+02, 5.899905e+02, 6.272970e+02, 6.633429e+02, 6.976532e+02, 7.297561e+02, 7.591936e+02, 7.855321e+02, 8.083734e+02, 8.273643e+02, 8.428261e+02, 8.564964e+02, 8.698564e+02, 8.828849e+02, 8.955606e+02, 9.078631e+02, 9.197720e+02, 9.312675e+02, 9.423305e+02, 9.529419e+02, 9.630837e+02, 9.727385e+02, 9.818896e+02, 9.905210e+02, 9.969929e+02, 1.000000e+03])
- cosp_prs(cosp_prs)float649e+04 7.4e+04 ... 2.45e+04 9e+03
- long_name :
- COSP Mean ISCCP pressure
- units :
- Pa
- bounds :
- cosp_prs_bnds
array([90000., 74000., 62000., 50000., 37500., 24500., 9000.])
- cosp_tau(cosp_tau)float640.15 0.8 2.45 6.5 16.2 41.5 100.0
- long_name :
- COSP Mean ISCCP optical depth
- units :
- 1
- bounds :
- cosp_tau_bnds
array([ 0.15 , 0.8 , 2.45 , 6.5 , 16.200001, 41.5 , 100. ])
- cosp_scol(cosp_scol)int321 2 3 4 5 6 7 8 9 10
- long_name :
- COSP subcolumn
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=int32)
- cosp_ht(cosp_ht)float641.896e+04 1.848e+04 ... 720.0 240.0
- long_name :
- COSP Mean Height for calipso and radar simulator outputs
- units :
- m
- bounds :
- cosp_ht_bnds
array([18960., 18480., 18000., 17520., 17040., 16560., 16080., 15600., 15120., 14640., 14160., 13680., 13200., 12720., 12240., 11760., 11280., 10800., 10320., 9840., 9360., 8880., 8400., 7920., 7440., 6960., 6480., 6000., 5520., 5040., 4560., 4080., 3600., 3120., 2640., 2160., 1680., 1200., 720., 240.])
- cosp_sr(cosp_sr)float64-0.495 0.605 2.1 ... 70.0 539.5
- long_name :
- COSP Mean Scattering Ratio for calipso simulator CFAD output
- units :
- 1
- bounds :
- cosp_sr_bnds
array([-4.950e-01, 6.050e-01, 2.100e+00, 4.000e+00, 6.000e+00, 8.500e+00, 1.250e+01, 1.750e+01, 2.250e+01, 2.750e+01, 3.500e+01, 4.500e+01, 5.500e+01, 7.000e+01, 5.395e+02])
- cosp_sza(cosp_sza)float640.0 20.0 40.0 60.0 80.0
- long_name :
- COSP Parasol SZA
- units :
- degrees
array([ 0., 20., 40., 60., 80.])
- cosp_htmisr(cosp_htmisr)float640.0 250.0 750.0 ... 1.6e+04 1.8e+04
- long_name :
- COSP MISR height
- units :
- m
- bounds :
- cosp_htmisr_bnds
array([ 0., 250., 750., 1250., 1750., 2250., 2750., 3500., 4500., 6000., 8000., 10000., 12000., 14500., 16000., 18000.])
- cosp_tau_modis(cosp_tau_modis)float640.15 0.8 2.45 6.5 16.2 41.5 100.0
- long_name :
- COSP Mean MODIS optical depth
- units :
- 1
- bounds :
- cosp_tau_modis_bnds
array([ 0.15 , 0.8 , 2.45 , 6.5 , 16.200001, 41.5 , 100. ])
- cosp_reffice(cosp_reffice)float645e-06 1.5e-05 ... 5e-05 7.5e-05
- long_name :
- COSP Mean MODIS effective radius (ice)
- units :
- m
- bounds :
- cosp_reffice_bnds
array([5.0e-06, 1.5e-05, 2.5e-05, 3.5e-05, 5.0e-05, 7.5e-05])
- cosp_reffliq(cosp_reffliq)float644e-06 9e-06 ... 1.75e-05 2.5e-05
- long_name :
- COSP Mean MODIS effective radius (liquid)
- units :
- m
- bounds :
- cosp_reffliq_bnds
array([4.00e-06, 9.00e-06, 1.15e-05, 1.40e-05, 1.75e-05, 2.50e-05])
- time(time)object0001-02-01 00:00:00 ... 0007-01-...
- long_name :
- time
- bounds :
- time_bnds
array([cftime.DatetimeNoLeap(1, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(7, 1, 1, 0, 0, 0, 0, has_year_zero=True)], dtype=object)
- lat(time, n_face)float64dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- latitude
- units :
- degrees_north
Array Chunk Bytes 11.87 MiB 168.75 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - lon(time, n_face)float64dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- longitude
- units :
- degrees_east
Array Chunk Bytes 11.87 MiB 168.75 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - area(time, n_face)float64dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- physics grid areas
Array Chunk Bytes 11.87 MiB 168.75 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - hyam(time, lev)float64dask.array<chunksize=(1, 72), meta=np.ndarray>
- long_name :
- hybrid A coefficient at layer midpoints
Array Chunk Bytes 40.50 kiB 576 B Shape (72, 72) (1, 72) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - hybm(time, lev)float64dask.array<chunksize=(1, 72), meta=np.ndarray>
- long_name :
- hybrid B coefficient at layer midpoints
Array Chunk Bytes 40.50 kiB 576 B Shape (72, 72) (1, 72) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - P0(time)float641e+05 1e+05 1e+05 ... 1e+05 1e+05
- long_name :
- reference pressure
- units :
- Pa
array([100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000.])
- hyai(time, ilev)float64dask.array<chunksize=(1, 73), meta=np.ndarray>
- long_name :
- hybrid A coefficient at layer interfaces
Array Chunk Bytes 41.06 kiB 584 B Shape (72, 73) (1, 73) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - hybi(time, ilev)float64dask.array<chunksize=(1, 73), meta=np.ndarray>
- long_name :
- hybrid B coefficient at layer interfaces
Array Chunk Bytes 41.06 kiB 584 B Shape (72, 73) (1, 73) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_prs_bnds(time, cosp_prs, nbnd)float64dask.array<chunksize=(1, 7, 2), meta=np.ndarray>
Array Chunk Bytes 7.88 kiB 112 B Shape (72, 7, 2) (1, 7, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_tau_bnds(time, cosp_tau, nbnd)float64dask.array<chunksize=(1, 7, 2), meta=np.ndarray>
Array Chunk Bytes 7.88 kiB 112 B Shape (72, 7, 2) (1, 7, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_ht_bnds(time, cosp_ht, nbnd)float64dask.array<chunksize=(1, 40, 2), meta=np.ndarray>
Array Chunk Bytes 45.00 kiB 640 B Shape (72, 40, 2) (1, 40, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_sr_bnds(time, cosp_sr, nbnd)float64dask.array<chunksize=(1, 15, 2), meta=np.ndarray>
Array Chunk Bytes 16.88 kiB 240 B Shape (72, 15, 2) (1, 15, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_htmisr_bnds(time, cosp_htmisr, nbnd)float64dask.array<chunksize=(1, 16, 2), meta=np.ndarray>
Array Chunk Bytes 18.00 kiB 256 B Shape (72, 16, 2) (1, 16, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_tau_modis_bnds(time, cosp_tau_modis, nbnd)float64dask.array<chunksize=(1, 7, 2), meta=np.ndarray>
Array Chunk Bytes 7.88 kiB 112 B Shape (72, 7, 2) (1, 7, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_reffice_bnds(time, cosp_reffice, nbnd)float64dask.array<chunksize=(1, 6, 2), meta=np.ndarray>
Array Chunk Bytes 6.75 kiB 96 B Shape (72, 6, 2) (1, 6, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_reffliq_bnds(time, cosp_reffliq, nbnd)float64dask.array<chunksize=(1, 6, 2), meta=np.ndarray>
Array Chunk Bytes 6.75 kiB 96 B Shape (72, 6, 2) (1, 6, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - date(time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- current date (YYYYMMDD)
Array Chunk Bytes 288 B 4 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type int32 numpy.ndarray - datesec(time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- current seconds of current date
Array Chunk Bytes 288 B 4 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type int32 numpy.ndarray - time_bnds(time, nbnd)objectdask.array<chunksize=(1, 2), meta=np.ndarray>
- long_name :
- time interval endpoints
Array Chunk Bytes 1.12 kiB 16 B Shape (72, 2) (1, 2) Dask graph 72 chunks in 145 graph layers Data type object numpy.ndarray - date_written(time)|S8dask.array<chunksize=(1,), meta=np.ndarray>
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type |S8 numpy.ndarray - time_written(time)|S8dask.array<chunksize=(1,), meta=np.ndarray>
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type |S8 numpy.ndarray - ndbase(time)int320 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0
- long_name :
- base day
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)
- nsbase(time)int320 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0
- long_name :
- seconds of base day
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)
- nbdate(time)int3210101 10101 10101 ... 10101 10101
- long_name :
- base date (YYYYMMDD)
array([10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101], dtype=int32)
- nbsec(time)int320 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0
- long_name :
- seconds of base date
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)
- mdt(time)int321800 1800 1800 ... 1800 1800 1800
- long_name :
- timestep
- units :
- s
array([1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800], dtype=int32)
- ndcur(time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- current day (from base day)
Array Chunk Bytes 288 B 4 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type int32 numpy.ndarray - nscur(time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- current seconds of current day
Array Chunk Bytes 288 B 4 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type int32 numpy.ndarray - co2vmr(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- co2 volume mixing ratio
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - ch4vmr(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- ch4 volume mixing ratio
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - n2ovmr(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- n2o volume mixing ratio
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - f11vmr(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- f11 volume mixing ratio
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - f12vmr(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- f12 volume mixing ratio
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - sol_tsi(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- total solar irradiance
- units :
- W/m2
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - nsteph(time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- current timestep
Array Chunk Bytes 288 B 4 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type int32 numpy.ndarray - AEROD_v(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Total Aerosol Optical Depth in visible band
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ANRAIN(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m-3
- long_name :
- Average rain number conc
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ANSNOW(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m-3
- long_name :
- Average snow number conc
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODABS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol absorption optical depth 550 nm
- standard_name :
- atmosphere_absorption_optical_thickness_due_to_ambient_aerosol_particles
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODABSBC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol absorption optical depth 550 nm from BC
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODALL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- AOD 550 nm for all time and species
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODBC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from BC
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODDUST(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from dust
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODDUST1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm model 1 from dust
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODDUST3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm model 3 from dust
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODDUST4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm model 4 from dust
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODMODE1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm mode 1
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODMODE2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm mode 2
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODMODE3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm mode 3
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODMODE4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm mode 4
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODNIR(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 850 nm
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODPOM(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from POM
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODSO4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from SO4
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODSOA(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from SOA
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODSS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from seasalt
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODUV(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 350 nm
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODVIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm
- standard_name :
- atmosphere_optical_thickness_due_to_ambient_aerosol_particles
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQRAIN(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- Average rain mixing ratio
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQSNOW(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- Average snow mixing ratio
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_DMS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- DMS aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_H2O2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- H2O2 aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_H2SO4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- H2SO4 aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_O3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- O3 aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_SO2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- SO2 aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_SOAG(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- SOAG aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AREI(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- Micron
- long_name :
- Average ice effective radius
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AREL(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- Micron
- long_name :
- Average droplet effective radius
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AWNC(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m-3
- long_name :
- Average cloud water number conc
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AWNI(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m-3
- long_name :
- Average cloud ice number conc
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - BURDEN1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Aerosol burden mode 1
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - BURDEN2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Aerosol burden mode 2
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - BURDEN3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Aerosol burden mode 3
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - BURDEN4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Aerosol burden mode 4
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CCN3(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/cm3
- long_name :
- CCN concentration at S=0.1%
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CDNUMC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2
- long_name :
- Vertically-integrated droplet concentration
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CFAD_SR532_CAL(time, cosp_ht, cosp_sr, n_face)float32dask.array<chunksize=(1, 40, 15, 21600), meta=np.ndarray>
- mdims :
- [7 6]
- units :
- 1
- long_name :
- Calipso Scattering Ratio CFAD (532 nm)
- cell_methods :
- time: mean
Array Chunk Bytes 3.48 GiB 49.44 MiB Shape (72, 40, 15, 21600) (1, 40, 15, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDHGH(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Vertically-integrated high cloud
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDHGH_CAL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso High-level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDHGH_CAL_ICE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso High-level Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDHGH_CAL_LIQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso High-level Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDHGH_CAL_UN(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso High-level Undefined-Phase Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDICE(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged cloud ice amount
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLIQ(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged cloud liquid amount
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLOW(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Vertically-integrated low cloud
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLOW_CAL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Low-level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLOW_CAL_ICE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Low-level Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLOW_CAL_LIQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Low-level Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLOW_CAL_UN(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Low-level Undefined-Phase Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDMED(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Vertically-integrated mid-level cloud
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDMED_CAL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Mid-level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDMED_CAL_ICE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Mid-level Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDMED_CAL_LIQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Mid-level Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDMED_CAL_UN(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Mid-level Undefined-Phase Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Vertically-integrated total cloud
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT_CAL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Total Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT_CAL_ICE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Total Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT_CAL_LIQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Total Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT_CAL_UN(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Total Undefined-Phase Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Total Cloud Fraction Calculated by the ISCCP Simulator
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLD_CAL(time, cosp_ht, n_face)float32dask.array<chunksize=(1, 40, 21600), meta=np.ndarray>
- mdims :
- 6
- units :
- percent
- long_name :
- Calipso Cloud Fraction (532 nm)
- cell_methods :
- time: mean
Array Chunk Bytes 237.30 MiB 3.30 MiB Shape (72, 40, 21600) (1, 40, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLD_CAL_ICE(time, cosp_ht, n_face)float32dask.array<chunksize=(1, 40, 21600), meta=np.ndarray>
- mdims :
- 6
- units :
- percent
- long_name :
- Calipso Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 237.30 MiB 3.30 MiB Shape (72, 40, 21600) (1, 40, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLD_CAL_LIQ(time, cosp_ht, n_face)float32dask.array<chunksize=(1, 40, 21600), meta=np.ndarray>
- mdims :
- 6
- units :
- percent
- long_name :
- Calipso Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 237.30 MiB 3.30 MiB Shape (72, 40, 21600) (1, 40, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLD_CAL_UN(time, cosp_ht, n_face)float32dask.array<chunksize=(1, 40, 21600), meta=np.ndarray>
- mdims :
- 6
- units :
- percent
- long_name :
- Calipso Undefined-Phase Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 237.30 MiB 3.30 MiB Shape (72, 40, 21600) (1, 40, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLD_MISR(time, cosp_htmisr, cosp_tau, n_face)float32dask.array<chunksize=(1, 16, 7, 21600), meta=np.ndarray>
- mdims :
- [4 9]
- units :
- percent
- long_name :
- Cloud Fraction from MISR Simulator
- cell_methods :
- time: mean
Array Chunk Bytes 664.45 MiB 9.23 MiB Shape (72, 16, 7, 21600) (1, 16, 7, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLHMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS High Level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLIMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLLMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS Low Level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLMMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS Mid Level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLMODIS(time, cosp_prs, cosp_tau_modis, n_face)float32dask.array<chunksize=(1, 7, 7, 21600), meta=np.ndarray>
- mdims :
- [10 3]
- units :
- %
- long_name :
- MODIS Cloud Area Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 290.70 MiB 4.04 MiB Shape (72, 7, 7, 21600) (1, 7, 7, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLOUD(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Cloud fraction
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLOUDFRAC_CLUBB(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLRIMODIS(time, cosp_reffice, cosp_tau_modis, n_face)float32dask.array<chunksize=(1, 6, 7, 21600), meta=np.ndarray>
- mdims :
- [10 11]
- units :
- %
- long_name :
- MODIS Cloud Area Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 249.17 MiB 3.46 MiB Shape (72, 6, 7, 21600) (1, 6, 7, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLRLMODIS(time, cosp_reffliq, cosp_tau_modis, n_face)float32dask.array<chunksize=(1, 6, 7, 21600), meta=np.ndarray>
- mdims :
- [10 12]
- units :
- %
- long_name :
- MODIS Cloud Area Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 249.17 MiB 3.46 MiB Shape (72, 6, 7, 21600) (1, 6, 7, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLTMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS Total Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLWMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CONCLD(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- fraction
- long_name :
- Convective cloud cover
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DCQ(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg/s
- long_name :
- Q tendency due to moist processes
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_DMS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_H2O2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_H2SO4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_O3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_SO2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_SOAG(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DMS_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mol/mol
- long_name :
- DMS in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DP_KCLDBASE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Deep conv. cloudbase level index
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DP_MFUP_MAX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Deep conv. column-max updraft mass flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DP_WCLDBASE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Deep conv. cloudbase vertical velocity
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DSTSFMBL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Mobilization flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DTCOND(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- K/s
- long_name :
- T tendency - moist processes
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DTENDTH(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- W/m2
- long_name :
- Dynamic Tendency of Total (vertically integrated) moist static energy
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DTENDTQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Dynamic Tendency of Total (vertically integrated) specific humidity
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - EXTINCT(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- /m
- long_name :
- Aerosol extinction
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FICE(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Fractional ice content within cloud
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FISCCP1_COSP(time, cosp_prs, cosp_tau, n_face)float32dask.array<chunksize=(1, 7, 7, 21600), meta=np.ndarray>
- mdims :
- [4 3]
- units :
- percent
- long_name :
- Grid-box fraction covered by each ISCCP D level cloud type
- cell_methods :
- time: mean
Array Chunk Bytes 290.70 MiB 4.04 MiB Shape (72, 7, 7, 21600) (1, 7, 7, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLDS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Downwelling longwave flux at surface
- standard_name :
- surface_downwelling_longwave_flux_in_air
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLNS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Net longwave flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLNSC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky net longwave flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLNT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Net longwave flux at top of model
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLNTC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky net longwave flux at top of model
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLUT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Upwelling longwave flux at top of model
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLUTC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky upwelling longwave flux at top of model
- standard_name :
- toa_outgoing_longwave_flux_assuming_clear_sky
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FREQI(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Fractional occurrence of ice
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FREQL(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Fractional occurrence of liquid
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FREQR(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Fractional occurrence of rain
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FREQS(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Fractional occurrence of snow
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSDS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Downwelling solar flux at surface
- standard_name :
- surface_downwelling_shortwave_flux_in_air
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSDSC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky downwelling solar flux at surface
- standard_name :
- surface_downwelling_shortwave_flux_in_air_assuming_clear_sky
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Net solar flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNSC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky net solar flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Net solar flux at top of model
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNTC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky net solar flux at top of model
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNTOA(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Net solar flux at top of atmosphere
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNTOAC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky net solar flux at top of atmosphere
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSUTOA(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Upwelling solar flux at top of atmosphere
- standard_name :
- toa_outgoing_shortwave_flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSUTOAC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky upwelling solar flux at top of atmosphere
- standard_name :
- toa_outgoing_shortwave_flux_assuming_clear_sky
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - F_eff(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Effective enrichment factor of marine organic matter
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - H2O2_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mol/mol
- long_name :
- H2O2 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - H2SO4_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mol/mol
- long_name :
- H2SO4 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - H2SO4_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- H2SO4 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ICEFRAC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Fraction of sfc area covered by sea-ice
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ICIMR(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- Prognostic in-cloud ice mixing ratio
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ICWMR(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- Prognostic in-cloud water mixing ratio
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - IWC(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/m3
- long_name :
- Grid box average ice water content
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - IWPMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg m-2
- long_name :
- MODIS Cloud Ice Water Path*CLIMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LANDFRAC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Fraction of sfc area covered by land
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LHFLX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- W/m2
- long_name :
- Surface latent heat flux
- standard_name :
- surface_upward_latent_heat_flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_DO3(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/s
- long_name :
- ozone vmr tendency by linearized ozone chemistry
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_DO3_PSC(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/s
- long_name :
- ozone vmr loss by PSCs using Carille et al. (1990)
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_O3CLIM(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- mol/mol
- long_name :
- climatology of ozone in LINOZ
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_O3COL(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- DU
- long_name :
- ozone column above
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_SFCSINK(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Tg/yr/m2
- long_name :
- surface o3 sink in LINOZ with an e-fold to a fixed concentration
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_SSO3(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg
- long_name :
- steady state ozone in LINOZ
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_SZA(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- degrees
- long_name :
- solar zenith angle in LINOZ
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LND_MBL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Soil erodibility factor
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LWCF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Longwave cloud forcing
- standard_name :
- toa_longwave_cloud_radiative_effect
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LWPMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg m-2
- long_name :
- MODIS Cloud Liquid Water Path*CLWMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - MEANCLDALB_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Mean cloud albedo*CLDTOT_ISCCP
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - MEANPTOP_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa
- long_name :
- Mean cloud top pressure*CLDTOT_ISCCP
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - MEANTAU_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Mean optical thickness*CLDTOT_ISCCP
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - MEANTBCLR_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- K
- long_name :
- Mean Clear-sky Infrared Tb from ISCCP simulator
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - MEANTB_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- K
- long_name :
- Mean Infrared Tb from ISCCP simulator
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_bc(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of bc mass concentration bc_a1+bc_c1+bc_a3+bc_c3+bc_a4+bc_c4
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_dst(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of dst mass concentration dst_a1+dst_c1+dst_a3+dst_c3
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_mom(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of mom mass concentration mom_a1+mom_c1+mom_a2+mom_c2+mom_a3+mom_c3+mom_a4+mom_c4
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_ncl(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of ncl mass concentration ncl_a1+ncl_c1+ncl_a2+ncl_c2+ncl_a3+ncl_c3
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_pom(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of pom mass concentration pom_a1+pom_c1+pom_a3+pom_c3+pom_a4+pom_c4
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_so4(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of so4 mass concentration so4_a1+so4_c1+so4_a2+so4_c2+so4_a3+so4_c3
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_soa(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of soa mass concentration soa_a1+soa_c1+soa_a2+soa_c2+soa_a3+soa_c3
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - NUMICE(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged cloud ice number
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - NUMLIQ(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged cloud liquid number
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - NUMRAI(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged rain number
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - NUMSNO(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged snow number
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - O3(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- mol/mol
- mixing_ratio :
- dry
- long_name :
- O3 concentration
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - O3_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mol/mol
- long_name :
- O3 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - OCNFRAC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Fraction of sfc area covered by ocean
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - OMEGA(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- Pa/s
- long_name :
- Vertical velocity (pressure)
- standard_name :
- lagrangian_tendency_of_air_pressure
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - OMEGA500(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa/s
- long_name :
- Vertical velocity at 500 mbar pressure surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - OMEGAT(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- K Pa/s
- long_name :
- Vertical heat flux
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PBLH(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m
- long_name :
- PBL height
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PCTMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa
- long_name :
- MODIS Cloud Top Pressure*CLTMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PHIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m2/s2
- long_name :
- Surface geopotential
- cell_methods :
- time: point
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PRECC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Convective precipitation rate (liq + ice)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PRECL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Large-scale (stable) precipitation rate (liq + ice)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PRECSC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Convective snow rate (water equivalent)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PRECSL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Large-scale (stable) snow rate (water equivalent)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa
- long_name :
- Surface pressure
- standard_name :
- surface_air_pressure
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PSL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa
- long_name :
- Sea level pressure
- standard_name :
- air_pressure_at_mean_sea_level
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - Q(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- mixing_ratio :
- wet
- long_name :
- Specific humidity
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - QFLX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Surface water flux
- standard_name :
- water_evapotranspiration_flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - QREFHT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- Reference height humidity
- standard_name :
- specific_humidity
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - QRL(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- Sampling_Sequence :
- rad_lwsw
- units :
- K/s
- long_name :
- Longwave heating rate
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - QRS(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- Sampling_Sequence :
- rad_lwsw
- units :
- K/s
- long_name :
- Solar heating rate
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - RAINQM(time, lev, n_face)float32dask.array<chunksize=(1, 72, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged rain amount
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 5.93 MiB Shape (72, 72, 21600) (1, 72, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - RAM1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- frac
- long_name :
- RAM1
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray