Loading Data Using Dask#
This notebook demonstrates how to load unstructured grid datasets into UXarray using Dask. It covers:
Loading high-resolution grid files: Includes a discussion on lazily converting these files to UGRID conventions.
Parallelizing UGRID conversion using chunking: Explains how to use chunking to distribute the workload across Dask workers.
Loading large datasets paired with grid files: Explores strategies for efficiently handling large datasets, including scenarios involving many individual data files.
import warnings
import dask
import xarray as xr
from dask.distributed import Client, LocalCluster
import uxarray as ux
warnings.filterwarnings("ignore")
Dask Setup#
This notebook runs on a single node of NCAR Derecho’s Supercomputer. Below, we set up our local cluster and client with Dask.
For more information about running Dask on NCAR’s systems, please refer to NCAR Dask Tutorial.
cluster = LocalCluster()
client = Client(cluster)
client
Client
Client-7e25e4ed-f549-11ef-9f0e-0040a687f9c6
Connection method: Cluster object | Cluster type: distributed.LocalCluster |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/42425/status |
Cluster Info
LocalCluster
11a4b627
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/42425/status | Workers: 16 |
Total threads: 256 | Total memory: 235.00 GiB |
Status: running | Using processes: True |
Scheduler Info
Scheduler
Scheduler-8413c8c1-f22a-4446-b3ad-53329e1168ac
Comm: tcp://127.0.0.1:44181 | Workers: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/42425/status | Total threads: 256 |
Started: Just now | Total memory: 235.00 GiB |
Workers
Worker: 0
Comm: tcp://127.0.0.1:34973 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/37815/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:39891 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-tcgsm3ek |
Worker: 1
Comm: tcp://127.0.0.1:41339 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/42903/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:44825 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-vuaxoti6 |
Worker: 2
Comm: tcp://127.0.0.1:36633 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/39069/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:34215 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-zusmbn1g |
Worker: 3
Comm: tcp://127.0.0.1:37295 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/33913/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:42927 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-_xj8dtf9 |
Worker: 4
Comm: tcp://127.0.0.1:41503 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/36971/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:41121 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-w99wtpo_ |
Worker: 5
Comm: tcp://127.0.0.1:39379 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/40093/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:46707 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-02yeefst |
Worker: 6
Comm: tcp://127.0.0.1:34871 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/42509/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:41467 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-b9o13vhq |
Worker: 7
Comm: tcp://127.0.0.1:43099 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/44871/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:39547 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-xibky4zq |
Worker: 8
Comm: tcp://127.0.0.1:43377 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/37593/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:41397 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-r7klrxuo |
Worker: 9
Comm: tcp://127.0.0.1:41855 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/32959/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:43223 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-cpargnh1 |
Worker: 10
Comm: tcp://127.0.0.1:39769 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/40619/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:42241 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-bm0cmdnv |
Worker: 11
Comm: tcp://127.0.0.1:41411 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/37061/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:43461 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-xywtai0m |
Worker: 12
Comm: tcp://127.0.0.1:41523 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/38965/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:42557 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-ymcjanca |
Worker: 13
Comm: tcp://127.0.0.1:41495 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/44855/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:43355 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-eovwsl_o |
Worker: 14
Comm: tcp://127.0.0.1:34151 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/36609/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:44423 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-kjko5tvk |
Worker: 15
Comm: tcp://127.0.0.1:36491 | Total threads: 16 |
Dashboard: https://jupyterhub.hpc.ucar.edu/stable/user/philipc/proxy/36481/status | Memory: 14.69 GiB |
Nanny: tcp://127.0.0.1:46507 | |
Local directory: /glade/derecho/scratch/philipc/tmp/dask-scratch-space/worker-k9s7w341 |
Data#
This notebook uses two datasets to demonstrate Dask functionality.
The first dataset is a 3.75 km MPAS Atmosphere Grid paired with a single diagnostic file.
The second dataset comes from the Department of Energy (DOE) Energy Exascale Earth System Model (E3SM). The case is configured as follows:
Atmosphere-only (AMIP)
Present-day control forcing (F2010)
1-degree horizontal resolution (ne30pg2)
Default Sea surface temperatures and sea ice
Special thanks to Falko Judt (NSF NCAR MMM) and Rachel Tam (UIUC) for sharing the data with us! sharing the data with us!
mpas_grid_path = "/glade/campaign/cisl/vast/uxarray/data/dyamond/3.75km/grid.nc"
mpas_data_path = "/glade/campaign/mmm/wmr/fjudt/projects/dyamond_1/3.75km/diag.2016-08-01_00.00.00.nc"
e3sm_grid_path = (
"/glade/campaign/cisl/vast/uxarray/data/e3sm_keeling/E3SM_grid/ne30pg2_grd.nc"
)
e3sm_data_pattern = "/glade/campaign/cisl/vast/uxarray/data/e3sm_keeling/ENSO_ctl_1std/unstructured/*.nc"
Loading Large Grid Files#
UXarray represents every grid format using the UGRID conventions, which often requires multiple pre-processing steps on the original grid data. These steps typically include:
Converting from 1-indexed to 0-indexed connectivity variables.
Replacing existing fill values with our standardized
INT_FILL_VALUE
.Shifting longitude coordinates to the range [-180, 180].
Many of these operations are relatively simple and can be delayed until the variable is needed. By loading the data as Dask arrays rather than directly into memory, we can defer these computations while still creating a Grid
instance. An added benefit is that only the required variables are computed when accessed, which is useful since grid files often contain additional variables that may not be immediately needed.
Most of UXarray’s supported grid formats allow for a lazy conversion to UGRID.
Supported (Fully supports lazy conversions with Dask):
UGRID
MPAS
ICON
ESMF
HEALPix
EXODUS
FESOM (netCDF)
Currently Unsupported:
SCRIP
GEOS
Structured
Points
FESOM (ascii)
Let’s examine an extreme case. Below, we have a complete 3.75 km MPAS atmosphere grid that contains a full set of grid variables, including multiple coordinates and connectivity variables.
First, let’s try to eagerly load the entire grid into memory without specifying any chunks. chunking.
%%time
uxgrid = ux.open_grid(mpas_grid_path)
uxgrid
CPU times: user 20.2 s, sys: 1min 37s, total: 1min 57s
Wall time: 1min 38s
<uxarray.Grid> Original Grid Type: MPAS Grid Dimensions: * n_node: 83886080 * n_edge: 125829120 * n_face: 41943042 * n_max_face_nodes: 6 * n_max_face_edges: 6 * n_max_face_faces: 6 * n_max_node_faces: 3 * two: 2 Grid Coordinates (Spherical): * node_lon: (83886080,) * node_lat: (83886080,) * edge_lon: (125829120,) * edge_lat: (125829120,) * face_lon: (41943042,) * face_lat: (41943042,) Grid Coordinates (Cartesian): * node_x: (83886080,) * node_y: (83886080,) * node_z: (83886080,) * edge_x: (125829120,) * edge_y: (125829120,) * edge_z: (125829120,) * face_x: (41943042,) * face_y: (41943042,) * face_z: (41943042,) Grid Connectivity Variables: * edge_face_connectivity: (125829120, 2) * node_face_connectivity: (83886080, 3) * face_edge_connectivity: (41943042, 6) * edge_node_connectivity: (125829120, 2) * face_node_connectivity: (41943042, 6) * face_face_connectivity: (41943042, 6) Grid Descriptor Variables: * face_areas: (41943042,) * edge_face_distances: (125829120,) * edge_node_distances: (125829120,)
- n_node: 83886080
- n_face: 41943042
- n_edge: 125829120
- n_max_face_nodes: 6
- n_max_node_faces: 3
- two: 2
- n_max_face_edges: 6
- n_max_face_faces: 6
- node_lon(n_node)float3289.98 89.94 89.97 ... -20.93 -20.93
array([ 89.98285 , 89.93793 , 89.97223 , ..., -20.905151, -20.925049, -20.934937], dtype=float32)
- node_lat(n_node)float32-58.29 -58.3 ... -0.03437 -0.05156
- standard_name :
- latitude
- long name :
- Latitude of the corner nodes of each face
- units :
- degrees_north
array([-5.8294930e+01, -5.8302582e+01, -5.8302593e+01, ..., -3.4371965e-02, -3.4371965e-02, -5.1557932e-02], dtype=float32)
- edge_lon(n_edge)float3289.98 89.98 89.96 ... -20.9 -20.9
array([ 89.97754 , 89.97754 , 89.963684, ..., -20.91504 , -20.900208, -20.900208], dtype=float32)
- edge_lat(n_edge)float32-58.3 -58.29 ... 0.008593 -0.008593
- standard_name :
- latitude
- long name :
- Latitude of the center of each edge
- units :
- degrees_north
array([-5.8298763e+01, -5.8286354e+01, -5.8276318e+01, ..., 6.1318790e-09, 8.5929977e-03, -8.5929865e-03], dtype=float32)
- face_lon(n_face)float3289.96 90.0 90.0 ... -20.89 -20.92
array([ 89.95511 , 90. , 90. , ..., -20.91504 , -20.885315, -20.91504 ], dtype=float32)
- face_lat(n_face)float32-58.29 -58.28 ... -0.01719
- standard_name :
- latitude
- long name :
- Latitude of the center of each face
- units :
- degrees_north
array([-5.8290184e+01, -5.8282520e+01, -5.8307335e+01, ..., 1.7185990e-02, 6.1927570e-09, -1.7185979e-02], dtype=float32)
- node_x(n_node)float32...
- standard_name :
- x
- long name :
- Cartesian x location of the corner nodes of each face
- units :
- meters
[83886080 values with dtype=float32]
- node_y(n_node)float32...
- standard_name :
- y
- long name :
- Cartesian y location of the corner nodes of each face
- units :
- meters
[83886080 values with dtype=float32]
- node_z(n_node)float32...
- standard_name :
- z
- long name :
- Cartesian z location of the corner nodes of each face
- units :
- meters
[83886080 values with dtype=float32]
- edge_x(n_edge)float32...
- standard_name :
- x
- long name :
- Cartesian x location of the center of each edge
- units :
- meters
[125829120 values with dtype=float32]
- edge_y(n_edge)float32...
- standard_name :
- y
- long name :
- Cartesian y location of the center of each edge
- units :
- meters
[125829120 values with dtype=float32]
- edge_z(n_edge)float32...
- standard_name :
- z
- long name :
- Cartesian z location of the center of each edge
- units :
- meters
[125829120 values with dtype=float32]
- face_x(n_face)float32...
- standard_name :
- x
- long name :
- Cartesian x location of the center of each face
- units :
- meters
[41943042 values with dtype=float32]
- face_y(n_face)float32...
- standard_name :
- y
- long name :
- Cartesian y location of the center of each face
- units :
- meters
[41943042 values with dtype=float32]
- face_z(n_face)float32...
- standard_name :
- z
- long name :
- Cartesian z location of the center of each face
- units :
- meters
[41943042 values with dtype=float32]
- edge_face_connectivity(n_edge, two)int640 2 0 ... 41943040 41943041
- cf_role :
- edge_face_connectivity
- long name :
- Faces that neighbor each edge
- start_index :
- 0
- _FillValue :
- -9223372036854775808
array([[ 0, 2], [ 0, 1], [ 0, 35], ..., [41943039, 41943041], [41943039, 41943040], [41943040, 41943041]])
- node_face_connectivity(n_node, n_max_node_faces)int640 2 1 ... 38010857 38010802
- cf_role :
- node_face_connectivity
- long name :
- Faces that neighbor each node
- start_index :
- 0
- _FillValue :
- -9223372036854775808
array([[ 0, 2, 1], [ 3, 4, 0], [ 0, 4, 2], ..., [38010800, 41943041, 38010801], [41943041, 38010857, 38010801], [38010801, 38010857, 38010802]])
- face_edge_connectivity(n_face, n_max_face_edges)int640 1 2 ... 121896726 121896724
- cf_role :
- face_edge_connectivity
- long name :
- Maps every face to its edges.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
array([[ 0, 1, 2, 3, 4, 5], [ 1, 6, 7, 8, 9, -9223372036854775808], [ 0, 10, 11, 12, 13, 6], ..., [ 121896604, 121896602, 121896891, 121896894, 125829117, 125829118], [ 121896607, 121896605, 125829118, 125829119, 121896723, 121896721], [ 125829119, 125829117, 121896893, 121896895, 121896726, 121896724]])
- edge_node_connectivity(n_edge, two)int642 0 0 ... 83886070 83886076
- cf_role :
- edge_node_connectivity
- long name :
- Maps every edge to the two nodes that it connects.
- start_index :
- 0
array([[ 2, 0], [ 0, 64], [ 64, 66], ..., [83886071, 83886070], [83886070, 83886069], [83886070, 83886076]])
- face_node_connectivity(n_face, n_max_face_nodes)int642 0 64 ... 83886078 83886077
- cf_role :
- face_node_connectivity
- long name :
- Maps every face to its corner nodes.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
array([[ 2, 0, 64, 66, 65, 1], [ 64, 0, 16, 32, 48, -9223372036854775808], [ 0, 2, 3, 17, 18, 16], ..., [ 83886069, 83886065, 83886066, 83886067, 83886071, 83886070], [ 83886074, 83886068, 83886069, 83886070, 83886076, 83886075], [ 83886076, 83886070, 83886071, 83886072, 83886078, 83886077]])
- face_face_connectivity(n_face, n_max_face_faces)int642 1 35 ... 38010801 38010800
- cf_role :
- face_face_connectivity
- long name :
- Faces that neighbor each face.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
array([[ 2, 1, 35, 45, 3, 4], [ 0, 2, 15, 25, 35, -9223372036854775808], [ 0, 4, 5, 16, 15, 1], ..., [ 38010762, 38010761, 38010855, 38010856, 41943041, 41943040], [ 38010763, 38010762, 41943039, 41943041, 38010800, 38010799], [ 41943040, 41943039, 38010856, 38010857, 38010801, 38010800]])
- face_areas(n_face)float32...
- cf_role :
- face_areas
- long_name :
- Area of each face.
[41943042 values with dtype=float32]
- edge_face_distances(n_edge)float32...
- cf_role :
- edge_face_distances
- long_name :
- Distances between the face centers that saddle each edge
[125829120 values with dtype=float32]
- edge_node_distances(n_edge)float32...
- cf_role :
- edge_node_distances
- long_name :
- Distances between the nodes that make up each edge.
[125829120 values with dtype=float32]
- model_name :
- mpas
- core_name :
- init_atmosphere
- source :
- MPAS
- Conventions :
- MPAS
- git_version :
- v6.0-dirty
- on_a_sphere :
- YES
- sphere_radius :
- 6371229.0
- is_periodic :
- NO
- x_period :
- 0.0
- y_period :
- 0.0
- history :
- mpirun -n 2304 ./init_atmosphere_model
- parent_id :
- rwws7w16u3
- mesh_spec :
- 0.0
- config_init_case :
- 7
- config_calendar_type :
- gregorian
- config_start_time :
- 2016-08-01_00:00:00
- config_stop_time :
- 2016-09-10_00:00:00
- config_theta_adv_order :
- 3
- config_coef_3rd_order :
- 0.25
- config_num_halos :
- 2
- config_nvertlevels :
- 75
- config_nsoillevels :
- 4
- config_nfglevels :
- 38
- config_nfgsoillevels :
- 4
- config_months :
- 12
- config_geog_data_path :
- /glade/p_old/work/wrfhelp/WPS_GEOG/
- config_met_prefix :
- FILE
- config_sfc_prefix :
- SST
- config_fg_interval :
- 86400
- config_landuse_data :
- USGS
- config_topo_data :
- GMTED2010
- config_use_spechumd :
- NO
- config_ztop :
- 40000.0
- config_nsmterrain :
- 1
- config_smooth_surfaces :
- YES
- config_dzmin :
- 0.3
- config_nsm :
- 30
- config_tc_vertical_grid :
- YES
- config_extrap_airtemp :
- linear
- config_static_interp :
- NO
- config_native_gwd_static :
- NO
- config_gwd_cell_scaling :
- 1.0
- config_vertical_grid :
- YES
- config_met_interp :
- YES
- config_input_sst :
- NO
- config_frac_seaice :
- YES
- config_pio_num_iotasks :
- 0
- config_pio_stride :
- 1
- config_block_decomp_file_prefix :
- x1.41943042.grid.graph.info.part.
- config_number_of_blocks :
- 0
- config_explicit_proc_decomp :
- NO
- config_proc_decomp_file_prefix :
- graph.info.part.
- file_id :
- 2oa2snclm9
- source_grid_spec :
- MPAS
This takes over a minute on a node of Derecho. We can observe that our Grid
contains a large number of variables, many of which we may never end up using.
Compared to using Xarray directly, this represents a significant performance difference. Note that because UXarray requires all grids to be internally represented using UGRID conventions, loading a Grid
will always be slower than a pure Xarray approach.
.
%%time
xrds = xr.open_dataset(mpas_grid_path)
CPU times: user 16.3 ms, sys: 105 ms, total: 121 ms
Wall time: 107 ms
One workaround is to specify a chunks
parameter, which uses Dask to load the grid variables. Because Dask allows computations to be delayed, we can defer these operations until they’re necessary, significantly reducing the time required to open a grid and explore its contents.
Below, we set chunks=-1
, which loads all of our data as Dask arrays, using a single chunk per variable.
.
%%time
uxgrid = ux.open_grid(mpas_grid_path, chunks=-1)
uxgrid
CPU times: user 1.67 s, sys: 1.26 s, total: 2.93 s
Wall time: 14.2 s
<uxarray.Grid> Original Grid Type: MPAS Grid Dimensions: * n_node: 83886080 * n_edge: 125829120 * n_face: 41943042 * n_max_face_nodes: 6 * n_max_face_edges: 6 * n_max_face_faces: 6 * n_max_node_faces: 3 * two: 2 Grid Coordinates (Spherical): * node_lon: (83886080,) * node_lat: (83886080,) * edge_lon: (125829120,) * edge_lat: (125829120,) * face_lon: (41943042,) * face_lat: (41943042,) Grid Coordinates (Cartesian): * node_x: (83886080,) * node_y: (83886080,) * node_z: (83886080,) * edge_x: (125829120,) * edge_y: (125829120,) * edge_z: (125829120,) * face_x: (41943042,) * face_y: (41943042,) * face_z: (41943042,) Grid Connectivity Variables: * edge_face_connectivity: (125829120, 2) * node_face_connectivity: (83886080, 3) * face_edge_connectivity: (41943042, 6) * edge_node_connectivity: (125829120, 2) * face_node_connectivity: (41943042, 6) * face_face_connectivity: (41943042, 6) Grid Descriptor Variables: * face_areas: (41943042,) * edge_face_distances: (125829120,) * edge_node_distances: (125829120,)
- n_node: 83886080
- n_face: 41943042
- n_edge: 125829120
- n_max_face_nodes: 6
- n_max_node_faces: 3
- two: 2
- n_max_face_edges: 6
- n_max_face_faces: 6
- node_lon(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - node_lat(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the corner nodes of each face
- units :
- degrees_north
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray - edge_lon(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - edge_lat(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each edge
- units :
- degrees_north
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray - face_lon(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - face_lat(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each face
- units :
- degrees_north
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray
- node_x(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - node_y(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - node_z(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_x(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_y(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_z(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_x(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_y(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_z(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- edge_face_connectivity(n_edge, two)int64dask.array<chunksize=(125829120, 2), meta=np.ndarray>
- cf_role :
- edge_face_connectivity
- long name :
- Faces that neighbor each edge
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (125829120, 2) (125829120, 2) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - node_face_connectivity(n_node, n_max_node_faces)int64dask.array<chunksize=(83886080, 3), meta=np.ndarray>
- cf_role :
- node_face_connectivity
- long name :
- Faces that neighbor each node
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (83886080, 3) (83886080, 3) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - face_edge_connectivity(n_face, n_max_face_edges)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_edge_connectivity
- long name :
- Maps every face to its edges.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray - edge_node_connectivity(n_edge, two)int64dask.array<chunksize=(125829120, 2), meta=np.ndarray>
- cf_role :
- edge_node_connectivity
- long name :
- Maps every edge to the two nodes that it connects.
- start_index :
- 0
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (125829120, 2) (125829120, 2) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - face_node_connectivity(n_face, n_max_face_nodes)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_node_connectivity
- long name :
- Maps every face to its corner nodes.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray - face_face_connectivity(n_face, n_max_face_faces)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_face_connectivity
- long name :
- Faces that neighbor each face.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray
- face_areas(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- cf_role :
- face_areas
- long_name :
- Area of each face.
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_face_distances(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- cf_role :
- edge_face_distances
- long_name :
- Distances between the face centers that saddle each edge
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_node_distances(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- cf_role :
- edge_node_distances
- long_name :
- Distances between the nodes that make up each edge.
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- model_name :
- mpas
- core_name :
- init_atmosphere
- source :
- MPAS
- Conventions :
- MPAS
- git_version :
- v6.0-dirty
- on_a_sphere :
- YES
- sphere_radius :
- 6371229.0
- is_periodic :
- NO
- x_period :
- 0.0
- y_period :
- 0.0
- history :
- mpirun -n 2304 ./init_atmosphere_model
- parent_id :
- rwws7w16u3
- mesh_spec :
- 0.0
- config_init_case :
- 7
- config_calendar_type :
- gregorian
- config_start_time :
- 2016-08-01_00:00:00
- config_stop_time :
- 2016-09-10_00:00:00
- config_theta_adv_order :
- 3
- config_coef_3rd_order :
- 0.25
- config_num_halos :
- 2
- config_nvertlevels :
- 75
- config_nsoillevels :
- 4
- config_nfglevels :
- 38
- config_nfgsoillevels :
- 4
- config_months :
- 12
- config_geog_data_path :
- /glade/p_old/work/wrfhelp/WPS_GEOG/
- config_met_prefix :
- FILE
- config_sfc_prefix :
- SST
- config_fg_interval :
- 86400
- config_landuse_data :
- USGS
- config_topo_data :
- GMTED2010
- config_use_spechumd :
- NO
- config_ztop :
- 40000.0
- config_nsmterrain :
- 1
- config_smooth_surfaces :
- YES
- config_dzmin :
- 0.3
- config_nsm :
- 30
- config_tc_vertical_grid :
- YES
- config_extrap_airtemp :
- linear
- config_static_interp :
- NO
- config_native_gwd_static :
- NO
- config_gwd_cell_scaling :
- 1.0
- config_vertical_grid :
- YES
- config_met_interp :
- YES
- config_input_sst :
- NO
- config_frac_seaice :
- YES
- config_pio_num_iotasks :
- 0
- config_pio_stride :
- 1
- config_block_decomp_file_prefix :
- x1.41943042.grid.graph.info.part.
- config_number_of_blocks :
- 0
- config_explicit_proc_decomp :
- NO
- config_proc_decomp_file_prefix :
- graph.info.part.
- file_id :
- 2oa2snclm9
- source_grid_spec :
- MPAS
We can see above that all our variables are loaded as dask.array
objects. By inspecting the high-level Dask graph for face_node_connectivity
, we can observe the complete set of computations and steps taken to parse and encode the data according to the UGRID conventions.
uxgrid.face_node_connectivity.data.dask
HighLevelGraph
HighLevelGraph with 17 layers and 17 keys from all layers.
Layer1: original
original-open_dataset-verticesOnCell-bf7a984439bb267dd3463be0321be53d
|
Layer2: open_dataset-verticesOnCell
open_dataset-verticesOnCell-bf7a984439bb267dd3463be0321be53d
|
Layer3: astype
astype-c92bc80ebc54956fcc28078df192a41f
|
Layer4: original
original-open_dataset-nEdgesOnCell-acc252cd4d77eb187160b7314ab2a543
|
Layer5: open_dataset-nEdgesOnCell
open_dataset-nEdgesOnCell-acc252cd4d77eb187160b7314ab2a543
|
Layer6: astype
astype-fbdcb7f49fdae873ba694bac7fc48701
|
Layer7: getitem
getitem-149ca190fe8db177a5211959d67d7ee1
|
Layer8: array
array-2a2bc8dce6a9b78455d5fb439011f414
|
Layer9: greater_equal
greater_equal-2d1a7a47fd227551905b779fce997c1f
|
Layer10: invert
invert-9f8a3423432fa8a6c044a6077f651ab6
|
Layer11: transpose
transpose-27a470fc1f21f1ecf2b93e74b2929b02
|
Layer12: where
where-8d58b872c1ad4b269110802d019c6040
|
Layer13: ne
ne-5373f6ebc9c1a1bad77b4422984d3ec4
|
Layer14: where
where-674faff89656f343b9d92ed9352dd276
|
Layer15: sub
sub-2e8e6ffdaeb8aca6261d37bc892ec282
|
Layer16: ne
ne-0f992b881c4b11dd6dd37e20b682661f
|
Layer17: where
where-220ec0d25750ec28efbf84f9a4cf39bb
|
If we want to load this variable into memory, we can use either the .load()
or .compute()
methods:
.load()
performs an in-place loading..compute()
returns a new variable with the data loaded into memory.
For example, to load the face_node_connectivity
variable into memory, you would do the following:
# load the variable in place
uxgrid.face_node_connectivity.load()
# create a new variable and assign it to the original using compute
uxgrid.face_node_connectivity_loaded = uxgrid.face_node_connectivity.compute()
Inspecting our Grid
once again, we see that after these computations, only the face_node_connectivity
variable is loaded into memory, while the remaining variables remain as Dask arrays.
uxgrid
<uxarray.Grid> Original Grid Type: MPAS Grid Dimensions: * n_node: 83886080 * n_edge: 125829120 * n_face: 41943042 * n_max_face_nodes: 6 * n_max_face_edges: 6 * n_max_face_faces: 6 * n_max_node_faces: 3 * two: 2 Grid Coordinates (Spherical): * node_lon: (83886080,) * node_lat: (83886080,) * edge_lon: (125829120,) * edge_lat: (125829120,) * face_lon: (41943042,) * face_lat: (41943042,) Grid Coordinates (Cartesian): * node_x: (83886080,) * node_y: (83886080,) * node_z: (83886080,) * edge_x: (125829120,) * edge_y: (125829120,) * edge_z: (125829120,) * face_x: (41943042,) * face_y: (41943042,) * face_z: (41943042,) Grid Connectivity Variables: * edge_face_connectivity: (125829120, 2) * node_face_connectivity: (83886080, 3) * face_edge_connectivity: (41943042, 6) * edge_node_connectivity: (125829120, 2) * face_node_connectivity: (41943042, 6) * face_face_connectivity: (41943042, 6) Grid Descriptor Variables: * face_areas: (41943042,) * edge_face_distances: (125829120,) * edge_node_distances: (125829120,)
- n_node: 83886080
- n_face: 41943042
- n_edge: 125829120
- n_max_face_nodes: 6
- n_max_node_faces: 3
- two: 2
- n_max_face_edges: 6
- n_max_face_faces: 6
- node_lon(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - node_lat(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the corner nodes of each face
- units :
- degrees_north
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray - edge_lon(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - edge_lat(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each edge
- units :
- degrees_north
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray - face_lon(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - face_lat(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each face
- units :
- degrees_north
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray
- node_x(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - node_y(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - node_z(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_x(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_y(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_z(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_x(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_y(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_z(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- edge_face_connectivity(n_edge, two)int64dask.array<chunksize=(125829120, 2), meta=np.ndarray>
- cf_role :
- edge_face_connectivity
- long name :
- Faces that neighbor each edge
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (125829120, 2) (125829120, 2) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - node_face_connectivity(n_node, n_max_node_faces)int64dask.array<chunksize=(83886080, 3), meta=np.ndarray>
- cf_role :
- node_face_connectivity
- long name :
- Faces that neighbor each node
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (83886080, 3) (83886080, 3) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - face_edge_connectivity(n_face, n_max_face_edges)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_edge_connectivity
- long name :
- Maps every face to its edges.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray - edge_node_connectivity(n_edge, two)int64dask.array<chunksize=(125829120, 2), meta=np.ndarray>
- cf_role :
- edge_node_connectivity
- long name :
- Maps every edge to the two nodes that it connects.
- start_index :
- 0
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (125829120, 2) (125829120, 2) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - face_node_connectivity(n_face, n_max_face_nodes)int642 0 64 ... 83886078 83886077
- cf_role :
- face_node_connectivity
- long name :
- Maps every face to its corner nodes.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
array([[ 2, 0, 64, 66, 65, 1], [ 64, 0, 16, 32, 48, -9223372036854775808], [ 0, 2, 3, 17, 18, 16], ..., [ 83886069, 83886065, 83886066, 83886067, 83886071, 83886070], [ 83886074, 83886068, 83886069, 83886070, 83886076, 83886075], [ 83886076, 83886070, 83886071, 83886072, 83886078, 83886077]])
- face_face_connectivity(n_face, n_max_face_faces)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_face_connectivity
- long name :
- Faces that neighbor each face.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray
- face_areas(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- cf_role :
- face_areas
- long_name :
- Area of each face.
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_face_distances(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- cf_role :
- edge_face_distances
- long_name :
- Distances between the face centers that saddle each edge
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_node_distances(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- cf_role :
- edge_node_distances
- long_name :
- Distances between the nodes that make up each edge.
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- model_name :
- mpas
- core_name :
- init_atmosphere
- source :
- MPAS
- Conventions :
- MPAS
- git_version :
- v6.0-dirty
- on_a_sphere :
- YES
- sphere_radius :
- 6371229.0
- is_periodic :
- NO
- x_period :
- 0.0
- y_period :
- 0.0
- history :
- mpirun -n 2304 ./init_atmosphere_model
- parent_id :
- rwws7w16u3
- mesh_spec :
- 0.0
- config_init_case :
- 7
- config_calendar_type :
- gregorian
- config_start_time :
- 2016-08-01_00:00:00
- config_stop_time :
- 2016-09-10_00:00:00
- config_theta_adv_order :
- 3
- config_coef_3rd_order :
- 0.25
- config_num_halos :
- 2
- config_nvertlevels :
- 75
- config_nsoillevels :
- 4
- config_nfglevels :
- 38
- config_nfgsoillevels :
- 4
- config_months :
- 12
- config_geog_data_path :
- /glade/p_old/work/wrfhelp/WPS_GEOG/
- config_met_prefix :
- FILE
- config_sfc_prefix :
- SST
- config_fg_interval :
- 86400
- config_landuse_data :
- USGS
- config_topo_data :
- GMTED2010
- config_use_spechumd :
- NO
- config_ztop :
- 40000.0
- config_nsmterrain :
- 1
- config_smooth_surfaces :
- YES
- config_dzmin :
- 0.3
- config_nsm :
- 30
- config_tc_vertical_grid :
- YES
- config_extrap_airtemp :
- linear
- config_static_interp :
- NO
- config_native_gwd_static :
- NO
- config_gwd_cell_scaling :
- 1.0
- config_vertical_grid :
- YES
- config_met_interp :
- YES
- config_input_sst :
- NO
- config_frac_seaice :
- YES
- config_pio_num_iotasks :
- 0
- config_pio_stride :
- 1
- config_block_decomp_file_prefix :
- x1.41943042.grid.graph.info.part.
- config_number_of_blocks :
- 0
- config_explicit_proc_decomp :
- NO
- config_proc_decomp_file_prefix :
- graph.info.part.
- file_id :
- 2oa2snclm9
- source_grid_spec :
- MPAS
Chunking Grid Dimensions#
Our grid consists of 41,943,042 faces, 83,886,080 nodes, and 125,829,120 edges. Instead of having a single chunk for each variable, we can consider chunking each individual variable across the grid dimensions.
By chunking the variables when loading them, we can distribute the work evenly across our Dask workers. The operations applied when encoding the grid format into UGRID conventions are embarrassingly parallelizable.
Recall that on a single node of Derecho, we have 256 available threads. Let’s evenly divide our data across all of our threads.
face_chunk = round(41_943_042 // 256)
node_chunk = round(83_886_080 // 256)
edge_chunk = round(125_829_120 // 256)
We can now specify our chunk parameter by passing a dictionary where each dimension is mapped to its corresponding chunk size.
%%time
uxgrid = ux.open_grid(
mpas_grid_path,
chunks={"n_face": face_chunk, "n_node": node_chunk, "n_edge": edge_chunk},
)
uxgrid
CPU times: user 1.44 s, sys: 608 ms, total: 2.04 s
Wall time: 4.59 s
<uxarray.Grid> Original Grid Type: MPAS Grid Dimensions: * n_node: 83886080 * n_edge: 125829120 * n_face: 41943042 * n_max_face_nodes: 6 * n_max_face_edges: 6 * n_max_face_faces: 6 * n_max_node_faces: 3 * two: 2 Grid Coordinates (Spherical): * node_lon: (83886080,) * node_lat: (83886080,) * edge_lon: (125829120,) * edge_lat: (125829120,) * face_lon: (41943042,) * face_lat: (41943042,) Grid Coordinates (Cartesian): * node_x: (83886080,) * node_y: (83886080,) * node_z: (83886080,) * edge_x: (125829120,) * edge_y: (125829120,) * edge_z: (125829120,) * face_x: (41943042,) * face_y: (41943042,) * face_z: (41943042,) Grid Connectivity Variables: * edge_face_connectivity: (125829120, 2) * node_face_connectivity: (83886080, 3) * face_edge_connectivity: (41943042, 6) * edge_node_connectivity: (125829120, 2) * face_node_connectivity: (41943042, 6) * face_face_connectivity: (41943042, 6) Grid Descriptor Variables: * face_areas: (41943042,) * edge_face_distances: (125829120,) * edge_node_distances: (125829120,)
- n_node: 83886080
- n_face: 41943042
- n_edge: 125829120
- n_max_face_nodes: 6
- n_max_node_faces: 3
- two: 2
- n_max_face_edges: 6
- n_max_face_faces: 6
- node_lon(n_node)float32dask.array<chunksize=(327680,), meta=np.ndarray>
Array Chunk Bytes 320.00 MiB 1.25 MiB Shape (83886080,) (327680,) Dask graph 256 chunks in 7 graph layers Data type float32 numpy.ndarray - node_lat(n_node)float32dask.array<chunksize=(327680,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the corner nodes of each face
- units :
- degrees_north
Array Chunk Bytes 320.00 MiB 1.25 MiB Shape (83886080,) (327680,) Dask graph 256 chunks in 4 graph layers Data type float32 numpy.ndarray - edge_lon(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 7 graph layers Data type float32 numpy.ndarray - edge_lat(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each edge
- units :
- degrees_north
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 4 graph layers Data type float32 numpy.ndarray - face_lon(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 7 graph layers Data type float32 numpy.ndarray - face_lat(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each face
- units :
- degrees_north
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 4 graph layers Data type float32 numpy.ndarray
- node_x(n_node)float32dask.array<chunksize=(327680,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 1.25 MiB Shape (83886080,) (327680,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - node_y(n_node)float32dask.array<chunksize=(327680,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 1.25 MiB Shape (83886080,) (327680,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - node_z(n_node)float32dask.array<chunksize=(327680,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 1.25 MiB Shape (83886080,) (327680,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_x(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_y(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_z(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - face_x(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 2 graph layers Data type float32 numpy.ndarray - face_y(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 2 graph layers Data type float32 numpy.ndarray - face_z(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 2 graph layers Data type float32 numpy.ndarray
- edge_face_connectivity(n_edge, two)int64dask.array<chunksize=(491520, 2), meta=np.ndarray>
- cf_role :
- edge_face_connectivity
- long name :
- Faces that neighbor each edge
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (125829120, 2) (491520, 2) Dask graph 256 chunks in 8 graph layers Data type int64 numpy.ndarray - node_face_connectivity(n_node, n_max_node_faces)int64dask.array<chunksize=(327680, 3), meta=np.ndarray>
- cf_role :
- node_face_connectivity
- long name :
- Faces that neighbor each node
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (83886080, 3) (327680, 3) Dask graph 256 chunks in 8 graph layers Data type int64 numpy.ndarray - face_edge_connectivity(n_face, n_max_face_edges)int64dask.array<chunksize=(163840, 6), meta=np.ndarray>
- cf_role :
- face_edge_connectivity
- long name :
- Maps every face to its edges.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (41943042, 6) (163840, 6) Dask graph 257 chunks in 17 graph layers Data type int64 numpy.ndarray - edge_node_connectivity(n_edge, two)int64dask.array<chunksize=(491520, 2), meta=np.ndarray>
- cf_role :
- edge_node_connectivity
- long name :
- Maps every edge to the two nodes that it connects.
- start_index :
- 0
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (125829120, 2) (491520, 2) Dask graph 256 chunks in 8 graph layers Data type int64 numpy.ndarray - face_node_connectivity(n_face, n_max_face_nodes)int64dask.array<chunksize=(163840, 6), meta=np.ndarray>
- cf_role :
- face_node_connectivity
- long name :
- Maps every face to its corner nodes.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (41943042, 6) (163840, 6) Dask graph 257 chunks in 17 graph layers Data type int64 numpy.ndarray - face_face_connectivity(n_face, n_max_face_faces)int64dask.array<chunksize=(163840, 6), meta=np.ndarray>
- cf_role :
- face_face_connectivity
- long name :
- Faces that neighbor each face.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (41943042, 6) (163840, 6) Dask graph 257 chunks in 17 graph layers Data type int64 numpy.ndarray
- face_areas(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
- cf_role :
- face_areas
- long_name :
- Area of each face.
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_face_distances(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- cf_role :
- edge_face_distances
- long_name :
- Distances between the face centers that saddle each edge
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_node_distances(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- cf_role :
- edge_node_distances
- long_name :
- Distances between the nodes that make up each edge.
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray
- model_name :
- mpas
- core_name :
- init_atmosphere
- source :
- MPAS
- Conventions :
- MPAS
- git_version :
- v6.0-dirty
- on_a_sphere :
- YES
- sphere_radius :
- 6371229.0
- is_periodic :
- NO
- x_period :
- 0.0
- y_period :
- 0.0
- history :
- mpirun -n 2304 ./init_atmosphere_model
- parent_id :
- rwws7w16u3
- mesh_spec :
- 0.0
- config_init_case :
- 7
- config_calendar_type :
- gregorian
- config_start_time :
- 2016-08-01_00:00:00
- config_stop_time :
- 2016-09-10_00:00:00
- config_theta_adv_order :
- 3
- config_coef_3rd_order :
- 0.25
- config_num_halos :
- 2
- config_nvertlevels :
- 75
- config_nsoillevels :
- 4
- config_nfglevels :
- 38
- config_nfgsoillevels :
- 4
- config_months :
- 12
- config_geog_data_path :
- /glade/p_old/work/wrfhelp/WPS_GEOG/
- config_met_prefix :
- FILE
- config_sfc_prefix :
- SST
- config_fg_interval :
- 86400
- config_landuse_data :
- USGS
- config_topo_data :
- GMTED2010
- config_use_spechumd :
- NO
- config_ztop :
- 40000.0
- config_nsmterrain :
- 1
- config_smooth_surfaces :
- YES
- config_dzmin :
- 0.3
- config_nsm :
- 30
- config_tc_vertical_grid :
- YES
- config_extrap_airtemp :
- linear
- config_static_interp :
- NO
- config_native_gwd_static :
- NO
- config_gwd_cell_scaling :
- 1.0
- config_vertical_grid :
- YES
- config_met_interp :
- YES
- config_input_sst :
- NO
- config_frac_seaice :
- YES
- config_pio_num_iotasks :
- 0
- config_pio_stride :
- 1
- config_block_decomp_file_prefix :
- x1.41943042.grid.graph.info.part.
- config_number_of_blocks :
- 0
- config_explicit_proc_decomp :
- NO
- config_proc_decomp_file_prefix :
- graph.info.part.
- file_id :
- 2oa2snclm9
- source_grid_spec :
- MPAS
Now let’s load in the minimal amount of variables we need. For many applications in UXarray, such as visualization, only the node_lon
, node_lat
, and face_node_connectivity
variables are required.
By calling .load()
on each of these variables, we trigger the computation of their conversion to the UGRID conventions and load them into memory.
%%time
uxgrid.face_node_connectivity.load()
uxgrid.node_lon.load()
uxgrid.node_lat.load()
uxgrid
CPU times: user 2.54 s, sys: 2.48 s, total: 5.02 s
Wall time: 8 s
<uxarray.Grid> Original Grid Type: MPAS Grid Dimensions: * n_node: 83886080 * n_edge: 125829120 * n_face: 41943042 * n_max_face_nodes: 6 * n_max_face_edges: 6 * n_max_face_faces: 6 * n_max_node_faces: 3 * two: 2 Grid Coordinates (Spherical): * node_lon: (83886080,) * node_lat: (83886080,) * edge_lon: (125829120,) * edge_lat: (125829120,) * face_lon: (41943042,) * face_lat: (41943042,) Grid Coordinates (Cartesian): * node_x: (83886080,) * node_y: (83886080,) * node_z: (83886080,) * edge_x: (125829120,) * edge_y: (125829120,) * edge_z: (125829120,) * face_x: (41943042,) * face_y: (41943042,) * face_z: (41943042,) Grid Connectivity Variables: * edge_face_connectivity: (125829120, 2) * node_face_connectivity: (83886080, 3) * face_edge_connectivity: (41943042, 6) * edge_node_connectivity: (125829120, 2) * face_node_connectivity: (41943042, 6) * face_face_connectivity: (41943042, 6) Grid Descriptor Variables: * face_areas: (41943042,) * edge_face_distances: (125829120,) * edge_node_distances: (125829120,)
- n_node: 83886080
- n_face: 41943042
- n_edge: 125829120
- n_max_face_nodes: 6
- n_max_node_faces: 3
- two: 2
- n_max_face_edges: 6
- n_max_face_faces: 6
- node_lon(n_node)float3289.98 89.94 89.97 ... -20.93 -20.93
array([ 89.98285 , 89.93793 , 89.97223 , ..., -20.905151, -20.925049, -20.934937], dtype=float32)
- node_lat(n_node)float32-58.29 -58.3 ... -0.03437 -0.05156
- standard_name :
- latitude
- long name :
- Latitude of the corner nodes of each face
- units :
- degrees_north
array([-5.8294930e+01, -5.8302582e+01, -5.8302593e+01, ..., -3.4371965e-02, -3.4371965e-02, -5.1557932e-02], dtype=float32)
- edge_lon(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 7 graph layers Data type float32 numpy.ndarray - edge_lat(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each edge
- units :
- degrees_north
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 4 graph layers Data type float32 numpy.ndarray - face_lon(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 7 graph layers Data type float32 numpy.ndarray - face_lat(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each face
- units :
- degrees_north
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 4 graph layers Data type float32 numpy.ndarray
- node_x(n_node)float32dask.array<chunksize=(327680,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 1.25 MiB Shape (83886080,) (327680,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - node_y(n_node)float32dask.array<chunksize=(327680,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 1.25 MiB Shape (83886080,) (327680,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - node_z(n_node)float32dask.array<chunksize=(327680,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 1.25 MiB Shape (83886080,) (327680,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_x(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_y(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_z(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - face_x(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 2 graph layers Data type float32 numpy.ndarray - face_y(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 2 graph layers Data type float32 numpy.ndarray - face_z(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 2 graph layers Data type float32 numpy.ndarray
- edge_face_connectivity(n_edge, two)int64dask.array<chunksize=(491520, 2), meta=np.ndarray>
- cf_role :
- edge_face_connectivity
- long name :
- Faces that neighbor each edge
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (125829120, 2) (491520, 2) Dask graph 256 chunks in 8 graph layers Data type int64 numpy.ndarray - node_face_connectivity(n_node, n_max_node_faces)int64dask.array<chunksize=(327680, 3), meta=np.ndarray>
- cf_role :
- node_face_connectivity
- long name :
- Faces that neighbor each node
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (83886080, 3) (327680, 3) Dask graph 256 chunks in 8 graph layers Data type int64 numpy.ndarray - face_edge_connectivity(n_face, n_max_face_edges)int64dask.array<chunksize=(163840, 6), meta=np.ndarray>
- cf_role :
- face_edge_connectivity
- long name :
- Maps every face to its edges.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (41943042, 6) (163840, 6) Dask graph 257 chunks in 17 graph layers Data type int64 numpy.ndarray - edge_node_connectivity(n_edge, two)int64dask.array<chunksize=(491520, 2), meta=np.ndarray>
- cf_role :
- edge_node_connectivity
- long name :
- Maps every edge to the two nodes that it connects.
- start_index :
- 0
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (125829120, 2) (491520, 2) Dask graph 256 chunks in 8 graph layers Data type int64 numpy.ndarray - face_node_connectivity(n_face, n_max_face_nodes)int642 0 64 ... 83886078 83886077
- cf_role :
- face_node_connectivity
- long name :
- Maps every face to its corner nodes.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
array([[ 2, 0, 64, 66, 65, 1], [ 64, 0, 16, 32, 48, -9223372036854775808], [ 0, 2, 3, 17, 18, 16], ..., [ 83886069, 83886065, 83886066, 83886067, 83886071, 83886070], [ 83886074, 83886068, 83886069, 83886070, 83886076, 83886075], [ 83886076, 83886070, 83886071, 83886072, 83886078, 83886077]])
- face_face_connectivity(n_face, n_max_face_faces)int64dask.array<chunksize=(163840, 6), meta=np.ndarray>
- cf_role :
- face_face_connectivity
- long name :
- Faces that neighbor each face.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 7.50 MiB Shape (41943042, 6) (163840, 6) Dask graph 257 chunks in 17 graph layers Data type int64 numpy.ndarray
- face_areas(n_face)float32dask.array<chunksize=(163840,), meta=np.ndarray>
- cf_role :
- face_areas
- long_name :
- Area of each face.
Array Chunk Bytes 160.00 MiB 640.00 kiB Shape (41943042,) (163840,) Dask graph 257 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_face_distances(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- cf_role :
- edge_face_distances
- long_name :
- Distances between the face centers that saddle each edge
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_node_distances(n_edge)float32dask.array<chunksize=(491520,), meta=np.ndarray>
- cf_role :
- edge_node_distances
- long_name :
- Distances between the nodes that make up each edge.
Array Chunk Bytes 480.00 MiB 1.88 MiB Shape (125829120,) (491520,) Dask graph 256 chunks in 2 graph layers Data type float32 numpy.ndarray
- model_name :
- mpas
- core_name :
- init_atmosphere
- source :
- MPAS
- Conventions :
- MPAS
- git_version :
- v6.0-dirty
- on_a_sphere :
- YES
- sphere_radius :
- 6371229.0
- is_periodic :
- NO
- x_period :
- 0.0
- y_period :
- 0.0
- history :
- mpirun -n 2304 ./init_atmosphere_model
- parent_id :
- rwws7w16u3
- mesh_spec :
- 0.0
- config_init_case :
- 7
- config_calendar_type :
- gregorian
- config_start_time :
- 2016-08-01_00:00:00
- config_stop_time :
- 2016-09-10_00:00:00
- config_theta_adv_order :
- 3
- config_coef_3rd_order :
- 0.25
- config_num_halos :
- 2
- config_nvertlevels :
- 75
- config_nsoillevels :
- 4
- config_nfglevels :
- 38
- config_nfgsoillevels :
- 4
- config_months :
- 12
- config_geog_data_path :
- /glade/p_old/work/wrfhelp/WPS_GEOG/
- config_met_prefix :
- FILE
- config_sfc_prefix :
- SST
- config_fg_interval :
- 86400
- config_landuse_data :
- USGS
- config_topo_data :
- GMTED2010
- config_use_spechumd :
- NO
- config_ztop :
- 40000.0
- config_nsmterrain :
- 1
- config_smooth_surfaces :
- YES
- config_dzmin :
- 0.3
- config_nsm :
- 30
- config_tc_vertical_grid :
- YES
- config_extrap_airtemp :
- linear
- config_static_interp :
- NO
- config_native_gwd_static :
- NO
- config_gwd_cell_scaling :
- 1.0
- config_vertical_grid :
- YES
- config_met_interp :
- YES
- config_input_sst :
- NO
- config_frac_seaice :
- YES
- config_pio_num_iotasks :
- 0
- config_pio_stride :
- 1
- config_block_decomp_file_prefix :
- x1.41943042.grid.graph.info.part.
- config_number_of_blocks :
- 0
- config_explicit_proc_decomp :
- NO
- config_proc_decomp_file_prefix :
- graph.info.part.
- file_id :
- 2oa2snclm9
- source_grid_spec :
- MPAS
Loading Large Datasets#
The previous example focused solely on working with the unstructured grid definition. In most cases, however, you’ll have an unstructured grid paired with data. This may involve loading a large series of data variables from a climate model that include many spatial and temporal dimensions. For these applications, using Dask is highly encouraged, as most machines cannot load all of this data into memory.
.
Opening a Single Data File#
Using the same grid as above, we can pair it with a data file to create a ux.UxDataset
. In this example, we have a high-resolution grid paired with a single diagnostic file from MPAS. In this case, we can set chunks=-1
if we simply want our data to be loaded as Dask arrays.
.
%%time
uxds = ux.open_dataset(mpas_grid_path, mpas_data_path, chunks=-1)
uxds
CPU times: user 1.62 s, sys: 999 ms, total: 2.62 s
Wall time: 12.8 s
<xarray.UxDataset> Size: 17GB Dimensions: (time: 1, StrLen: 64, n_face: 41943042, n_node: 83886080) Coordinates: * time (time) datetime64[ns] 8B 2016-08-01 Dimensions without coordinates: StrLen, n_face, n_node Data variables: (12/99) xtime_old (time, StrLen) |S1 64B dask.array<chunksize=(1, 64), meta=np.ndarray> taux (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> tauy (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> olrtoa (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> cldcvr (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> vert_int_qv (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> ... ... umeridional_300hPa (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> umeridional_400hPa (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> uzonal_300hPa (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> uzonal_400hPa (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> xtime (time, StrLen) |S1 64B dask.array<chunksize=(1, 64), meta=np.ndarray> zgrid (n_face) float32 168MB dask.array<chunksize=(41943042,), meta=np.ndarray>
<xarray.UxDataset> Size: 17GB Dimensions: (time: 1, StrLen: 64, n_face: 41943042, n_node: 83886080) Coordinates: * time (time) datetime64[ns] 8B 2016-08-01 Dimensions without coordinates: StrLen, n_face, n_node Data variables: (12/99) xtime_old (time, StrLen) |S1 64B dask.array<chunksize=(1, 64), meta=np.ndarray> taux (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> tauy (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> olrtoa (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> cldcvr (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> vert_int_qv (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> ... ... umeridional_300hPa (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> umeridional_400hPa (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> uzonal_300hPa (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> uzonal_400hPa (time, n_face) float32 168MB dask.array<chunksize=(1, 41943042), meta=np.ndarray> xtime (time, StrLen) |S1 64B dask.array<chunksize=(1, 64), meta=np.ndarray> zgrid (n_face) float32 168MB dask.array<chunksize=(41943042,), meta=np.ndarray>
- time: 1
- StrLen: 64
- n_face: 41943042
- n_node: 83886080
- time(time)datetime64[ns]2016-08-01
- long_name :
- valid time
array(['2016-08-01T00:00:00.000000000'], dtype='datetime64[ns]')
- xtime_old(time, StrLen)|S1dask.array<chunksize=(1, 64), meta=np.ndarray>
- units :
- YYYY-MM-DD_hh:mm:ss
- long_name :
- Model valid time
Array Chunk Bytes 64 B 64 B Shape (1, 64) (1, 64) Dask graph 1 chunks in 2 graph layers Data type |S1 numpy.ndarray - taux(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- N m^{-2}
- long_name :
- surface zonal momentum flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - tauy(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- N m^{-2}
- long_name :
- surface meridional momentum flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - olrtoa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- W m^{-2}
- long_name :
- top-of-atmosphere outgoing longwave radiation flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cldcvr(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- unitless
- long_name :
- cloud cover (max of cldfrac along the vertical)
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vert_int_qv(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- kg m^{-2}
- long_name :
- Vertically integrated water vapor mixing ratio
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vert_int_qc(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- kg m^{-2}
- long_name :
- Vertically integrated cloud water mixing ratio
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vert_int_qr(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- kg m^{-2}
- long_name :
- Vertically integrated rain mixing ratio
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vert_int_qs(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- kg m^{-2}
- long_name :
- Vertically integrated snow mixing ratio
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vert_int_qi(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- kg m^{-2}
- long_name :
- Vertically integrated ice mixing ratio
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vert_int_qg(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- kg m^{-2}
- long_name :
- Vertically integrated graupel mixing ratio
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - refl10cm_1km(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- dBZ
- long_name :
- diagnosed 10 cm radar reflectivity at 1 km AGL
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - precipw(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- kg m^{-2}
- long_name :
- precipitable water
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - u10(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- 10-meter zonal wind
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - v10(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- 10-meter meridional wind
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - q2(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- kg kg^{-1}
- long_name :
- 2-meter specific humidity
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - t2m(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- 2-meter temperature
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - th2m(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- 2-meter potential temperature
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - mslp(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- Pa
- long_name :
- Mean sea-level pressure
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - relhum_200hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- percent
- long_name :
- Relative humidity vertically interpolated to 200 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - relhum_250hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- percent
- long_name :
- Relative humidity vertically interpolated to 250 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - relhum_500hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- percent
- long_name :
- Relative humidity vertically interpolated to 500 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - relhum_700hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- percent
- long_name :
- Relative humidity vertically interpolated to 700 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - relhum_850hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- percent
- long_name :
- Relative humidity vertically interpolated to 850 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - relhum_925hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- percent
- long_name :
- Relative humidity vertically interpolated to 925 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - dewpoint_200hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Dewpoint temperature vertically interpolated to 200 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - dewpoint_250hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Dewpoint temperature vertically interpolated to 250 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - dewpoint_500hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Dewpoint temperature vertically interpolated to 500 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - dewpoint_700hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Dewpoint temperature vertically interpolated to 700 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - dewpoint_850hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Dewpoint temperature vertically interpolated to 850 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - dewpoint_925hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Dewpoint temperature vertically interpolated to 925 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature_200hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Temperature vertically interpolated to 200 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature_250hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Temperature vertically interpolated to 250 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature_500hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Temperature vertically interpolated to 500 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature_700hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Temperature vertically interpolated to 700 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature_850hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Temperature vertically interpolated to 850 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature_925hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
- long_name :
- Temperature vertically interpolated to 925 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - height_200hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m
- long_name :
- Geometric height interpolated to 200 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - height_250hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m
- long_name :
- Geometric height interpolated to 250 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - height_500hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m
- long_name :
- Geometric height interpolated to 500 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - height_700hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m
- long_name :
- Geometric height interpolated to 700 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - height_850hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m
- long_name :
- Geometric height interpolated to 850 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - height_925hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m
- long_name :
- Geometric height interpolated to 925 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - uzonal_200hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed zonal wind at cell centers, vertically interpolated to 200 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - uzonal_250hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed zonal wind at cell centers, vertically interpolated to 250 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - uzonal_500hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed zonal wind at cell centers, vertically interpolated to 500 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - uzonal_700hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed zonal wind at cell centers, vertically interpolated to 700 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - uzonal_850hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed zonal wind at cell centers, vertically interpolated to 850 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - uzonal_925hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed zonal wind at cell centers, vertically interpolated to 925 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - umeridional_200hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed meridional wind at cell centers, vertically interpolated to 200 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - umeridional_250hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed meridional wind at cell centers, vertically interpolated to 250 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - umeridional_500hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed meridional wind at cell centers, vertically interpolated to 500 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - umeridional_700hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed meridional wind at cell centers, vertically interpolated to 700 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - umeridional_850hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed meridional wind at cell centers, vertically interpolated to 850 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - umeridional_925hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Reconstructed meridional wind at cell centers, vertically interpolated to 925 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - w_200hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Vertical velocity vertically interpolated to 200 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - w_250hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Vertical velocity vertically interpolated to 250 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - w_500hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Vertical velocity vertically interpolated to 500 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - w_700hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Vertical velocity vertically interpolated to 700 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - w_850hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Vertical velocity vertically interpolated to 850 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - w_925hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m s^{-1}
- long_name :
- Vertical velocity vertically interpolated to 925 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - omega_200hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- Pa s^{-1}
- long_name :
- Pressure velocity vertically interpolated to 200 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - omega_250hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- Pa s^{-1}
- long_name :
- Pressure velocity vertically interpolated to 250 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - omega_500hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- Pa s^{-1}
- long_name :
- Pressure velocity vertically interpolated to 500 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - omega_700hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- Pa s^{-1}
- long_name :
- Pressure velocity vertically interpolated to 700 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - omega_850hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- Pa s^{-1}
- long_name :
- Pressure velocity vertically interpolated to 850 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - omega_925hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- Pa s^{-1}
- long_name :
- Pressure velocity vertically interpolated to 925 hPa
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vorticity_200hPa(time, n_node)float32dask.array<chunksize=(1, 83886080), meta=np.ndarray>
- units :
- s^{-1}
- long_name :
- Relative vorticity vertically interpolated to 200 hPa
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (1, 83886080) (1, 83886080) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vorticity_250hPa(time, n_node)float32dask.array<chunksize=(1, 83886080), meta=np.ndarray>
- units :
- s^{-1}
- long_name :
- Relative vorticity vertically interpolated to 250 hPa
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (1, 83886080) (1, 83886080) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vorticity_500hPa(time, n_node)float32dask.array<chunksize=(1, 83886080), meta=np.ndarray>
- units :
- s^{-1}
- long_name :
- Relative vorticity vertically interpolated to 500 hPa
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (1, 83886080) (1, 83886080) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vorticity_700hPa(time, n_node)float32dask.array<chunksize=(1, 83886080), meta=np.ndarray>
- units :
- s^{-1}
- long_name :
- Relative vorticity vertically interpolated to 700 hPa
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (1, 83886080) (1, 83886080) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vorticity_850hPa(time, n_node)float32dask.array<chunksize=(1, 83886080), meta=np.ndarray>
- units :
- s^{-1}
- long_name :
- Relative vorticity vertically interpolated to 850 hPa
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (1, 83886080) (1, 83886080) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - vorticity_925hPa(time, n_node)float32dask.array<chunksize=(1, 83886080), meta=np.ndarray>
- units :
- s^{-1}
- long_name :
- Relative vorticity vertically interpolated to 925 hPa
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (1, 83886080) (1, 83886080) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cape(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- J kg^{-1}
- long_name :
- Convective available potential energy
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - cin(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- J kg^{-1}
- long_name :
- Convective inhibition
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - acswupb(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- W m^{-2}
- long_name :
- accumulated all-sky upward surface shortwave radiation flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - acswdnb(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- W m^{-2}
- long_name :
- accumulated all-sky downward surface shortwave radiation flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - acswnetb(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- J m^{-2}
- long_name :
- accumulated all-sky net surface shortwave radiation
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - acswupt(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- W m^{-2}
- long_name :
- accumulated all-sky upward top-of-atmosphere shortwave radiation flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - acswdnt(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- W m^{-2}
- long_name :
- accumulated all-sky downward top-of-atmosphere shortwave radiation flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - acswnett(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- J m^{-2}
- long_name :
- accumulated all-sky net top-of-atmosphere shortwave radiation
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - aclwupb(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- W m^{-2}
- long_name :
- accumulated all-sky upward surface longwave radiation flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - aclwdnb(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- W m^{-2}
- long_name :
- accumulated all-sky downward surface longwave radiation flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - aclwnetb(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- J m^{-2}
- long_name :
- accumulated all-sky net surface longwave radiation
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - aclwupt(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- W m^{-2}
- long_name :
- accumulated all-sky upward surface longwave radiation flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - aclwdnt(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- W m^{-2}
- long_name :
- accumulated clear-sky downward surface longwave radiation flux
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - aclwnett(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- J m^{-2}
- long_name :
- accumulated all-sky net top-of-atmosphere longwave radiation
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rainc(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- mm
- long_name :
- accumulated convective precipitation
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - rainnc(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- mm
- long_name :
- accumulated total grid-scale precipitation
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - height_300hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - height_400hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature_300hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - temperature_400hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- K
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - umeridional_300hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m/s
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - umeridional_400hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m/s
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - uzonal_300hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m/s
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - uzonal_400hPa(time, n_face)float32dask.array<chunksize=(1, 41943042), meta=np.ndarray>
- units :
- m/s
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (1, 41943042) (1, 41943042) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - xtime(time, StrLen)|S1dask.array<chunksize=(1, 64), meta=np.ndarray>
- units :
- YYYY-MM-DD_hh:mm:ss
- long_name :
- Model valid time
- cell_methods :
- string1: mean
Array Chunk Bytes 64 B 64 B Shape (1, 64) (1, 64) Dask graph 1 chunks in 2 graph layers Data type |S1 numpy.ndarray - zgrid(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- cell_methods :
- nVertLevelsP1: mean
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- timePandasIndex
PandasIndex(DatetimeIndex(['2016-08-01'], dtype='datetime64[ns]', name='time', freq=None))
Show Grid Information
<uxarray.Grid> Original Grid Type: MPAS Grid Dimensions: * n_node: 83886080 * n_edge: 125829120 * n_face: 41943042 * n_max_face_nodes: 6 * n_max_face_edges: 6 * n_max_face_faces: 6 * n_max_node_faces: 3 * two: 2 Grid Coordinates (Spherical): * node_lon: (83886080,) * node_lat: (83886080,) * edge_lon: (125829120,) * edge_lat: (125829120,) * face_lon: (41943042,) * face_lat: (41943042,) Grid Coordinates (Cartesian): * node_x: (83886080,) * node_y: (83886080,) * node_z: (83886080,) * edge_x: (125829120,) * edge_y: (125829120,) * edge_z: (125829120,) * face_x: (41943042,) * face_y: (41943042,) * face_z: (41943042,) Grid Connectivity Variables: * edge_face_connectivity: (125829120, 2) * node_face_connectivity: (83886080, 3) * face_edge_connectivity: (41943042, 6) * edge_node_connectivity: (125829120, 2) * face_node_connectivity: (41943042, 6) * face_face_connectivity: (41943042, 6) Grid Descriptor Variables: * face_areas: (41943042,) * edge_face_distances: (125829120,) * edge_node_distances: (125829120,)
- n_node: 83886080
- n_face: 41943042
- n_edge: 125829120
- n_max_face_nodes: 6
- n_max_node_faces: 3
- two: 2
- n_max_face_edges: 6
- n_max_face_faces: 6
- node_lon(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - node_lat(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the corner nodes of each face
- units :
- degrees_north
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray - edge_lon(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - edge_lat(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each edge
- units :
- degrees_north
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray - face_lon(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - face_lat(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each face
- units :
- degrees_north
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray
- node_x(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - node_y(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - node_z(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_x(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_y(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_z(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_x(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_y(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_z(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- edge_face_connectivity(n_edge, two)int64dask.array<chunksize=(125829120, 2), meta=np.ndarray>
- cf_role :
- edge_face_connectivity
- long name :
- Faces that neighbor each edge
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (125829120, 2) (125829120, 2) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - node_face_connectivity(n_node, n_max_node_faces)int64dask.array<chunksize=(83886080, 3), meta=np.ndarray>
- cf_role :
- node_face_connectivity
- long name :
- Faces that neighbor each node
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (83886080, 3) (83886080, 3) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - face_edge_connectivity(n_face, n_max_face_edges)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_edge_connectivity
- long name :
- Maps every face to its edges.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray - edge_node_connectivity(n_edge, two)int64dask.array<chunksize=(125829120, 2), meta=np.ndarray>
- cf_role :
- edge_node_connectivity
- long name :
- Maps every edge to the two nodes that it connects.
- start_index :
- 0
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (125829120, 2) (125829120, 2) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - face_node_connectivity(n_face, n_max_face_nodes)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_node_connectivity
- long name :
- Maps every face to its corner nodes.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray - face_face_connectivity(n_face, n_max_face_faces)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_face_connectivity
- long name :
- Faces that neighbor each face.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray
- face_areas(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- cf_role :
- face_areas
- long_name :
- Area of each face.
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_face_distances(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- cf_role :
- edge_face_distances
- long_name :
- Distances between the face centers that saddle each edge
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_node_distances(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- cf_role :
- edge_node_distances
- long_name :
- Distances between the nodes that make up each edge.
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- model_name :
- mpas
- core_name :
- init_atmosphere
- source :
- MPAS
- Conventions :
- MPAS
- git_version :
- v6.0-dirty
- on_a_sphere :
- YES
- sphere_radius :
- 6371229.0
- is_periodic :
- NO
- x_period :
- 0.0
- y_period :
- 0.0
- history :
- mpirun -n 2304 ./init_atmosphere_model
- parent_id :
- rwws7w16u3
- mesh_spec :
- 0.0
- config_init_case :
- 7
- config_calendar_type :
- gregorian
- config_start_time :
- 2016-08-01_00:00:00
- config_stop_time :
- 2016-09-10_00:00:00
- config_theta_adv_order :
- 3
- config_coef_3rd_order :
- 0.25
- config_num_halos :
- 2
- config_nvertlevels :
- 75
- config_nsoillevels :
- 4
- config_nfglevels :
- 38
- config_nfgsoillevels :
- 4
- config_months :
- 12
- config_geog_data_path :
- /glade/p_old/work/wrfhelp/WPS_GEOG/
- config_met_prefix :
- FILE
- config_sfc_prefix :
- SST
- config_fg_interval :
- 86400
- config_landuse_data :
- USGS
- config_topo_data :
- GMTED2010
- config_use_spechumd :
- NO
- config_ztop :
- 40000.0
- config_nsmterrain :
- 1
- config_smooth_surfaces :
- YES
- config_dzmin :
- 0.3
- config_nsm :
- 30
- config_tc_vertical_grid :
- YES
- config_extrap_airtemp :
- linear
- config_static_interp :
- NO
- config_native_gwd_static :
- NO
- config_gwd_cell_scaling :
- 1.0
- config_vertical_grid :
- YES
- config_met_interp :
- YES
- config_input_sst :
- NO
- config_frac_seaice :
- YES
- config_pio_num_iotasks :
- 0
- config_pio_stride :
- 1
- config_block_decomp_file_prefix :
- x1.41943042.grid.graph.info.part.
- config_number_of_blocks :
- 0
- config_explicit_proc_decomp :
- NO
- config_proc_decomp_file_prefix :
- graph.info.part.
- file_id :
- 2oa2snclm9
- source_grid_spec :
- MPAS
Let’s access our "relhum_200hPa"
data variable and compute the global mean. Since our data is loaded using Dask, we need to trigger the computation using .compute()
or .load()
. For example:
%%time
uxds["relhum_200hPa"].mean().compute()
CPU times: user 94.5 ms, sys: 72.9 ms, total: 167 ms
Wall time: 727 ms
<xarray.UxDataArray 'relhum_200hPa' ()> Size: 4B array(25.246592, dtype=float32)
<xarray.UxDataArray 'relhum_200hPa' ()> Size: 4B array(25.246592, dtype=float32)
- 25.25
array(25.246592, dtype=float32)
Show Grid Information
<uxarray.Grid> Original Grid Type: MPAS Grid Dimensions: * n_node: 83886080 * n_edge: 125829120 * n_face: 41943042 * n_max_face_nodes: 6 * n_max_face_edges: 6 * n_max_face_faces: 6 * n_max_node_faces: 3 * two: 2 Grid Coordinates (Spherical): * node_lon: (83886080,) * node_lat: (83886080,) * edge_lon: (125829120,) * edge_lat: (125829120,) * face_lon: (41943042,) * face_lat: (41943042,) Grid Coordinates (Cartesian): * node_x: (83886080,) * node_y: (83886080,) * node_z: (83886080,) * edge_x: (125829120,) * edge_y: (125829120,) * edge_z: (125829120,) * face_x: (41943042,) * face_y: (41943042,) * face_z: (41943042,) Grid Connectivity Variables: * edge_face_connectivity: (125829120, 2) * node_face_connectivity: (83886080, 3) * face_edge_connectivity: (41943042, 6) * edge_node_connectivity: (125829120, 2) * face_node_connectivity: (41943042, 6) * face_face_connectivity: (41943042, 6) Grid Descriptor Variables: * face_areas: (41943042,) * edge_face_distances: (125829120,) * edge_node_distances: (125829120,)
- n_node: 83886080
- n_face: 41943042
- n_edge: 125829120
- n_max_face_nodes: 6
- n_max_node_faces: 3
- two: 2
- n_max_face_edges: 6
- n_max_face_faces: 6
- node_lon(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - node_lat(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the corner nodes of each face
- units :
- degrees_north
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray - edge_lon(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - edge_lat(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each edge
- units :
- degrees_north
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray - face_lon(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 7 graph layers Data type float32 numpy.ndarray - face_lat(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- latitude
- long name :
- Latitude of the center of each face
- units :
- degrees_north
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 4 graph layers Data type float32 numpy.ndarray
- node_x(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - node_y(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - node_z(n_node)float32dask.array<chunksize=(83886080,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the corner nodes of each face
- units :
- meters
Array Chunk Bytes 320.00 MiB 320.00 MiB Shape (83886080,) (83886080,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_x(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_y(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_z(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each edge
- units :
- meters
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_x(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- x
- long name :
- Cartesian x location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_y(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- y
- long name :
- Cartesian y location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - face_z(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- standard_name :
- z
- long name :
- Cartesian z location of the center of each face
- units :
- meters
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- edge_face_connectivity(n_edge, two)int64dask.array<chunksize=(125829120, 2), meta=np.ndarray>
- cf_role :
- edge_face_connectivity
- long name :
- Faces that neighbor each edge
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (125829120, 2) (125829120, 2) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - node_face_connectivity(n_node, n_max_node_faces)int64dask.array<chunksize=(83886080, 3), meta=np.ndarray>
- cf_role :
- node_face_connectivity
- long name :
- Faces that neighbor each node
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (83886080, 3) (83886080, 3) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - face_edge_connectivity(n_face, n_max_face_edges)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_edge_connectivity
- long name :
- Maps every face to its edges.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray - edge_node_connectivity(n_edge, two)int64dask.array<chunksize=(125829120, 2), meta=np.ndarray>
- cf_role :
- edge_node_connectivity
- long name :
- Maps every edge to the two nodes that it connects.
- start_index :
- 0
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (125829120, 2) (125829120, 2) Dask graph 1 chunks in 8 graph layers Data type int64 numpy.ndarray - face_node_connectivity(n_face, n_max_face_nodes)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_node_connectivity
- long name :
- Maps every face to its corner nodes.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray - face_face_connectivity(n_face, n_max_face_faces)int64dask.array<chunksize=(41943042, 6), meta=np.ndarray>
- cf_role :
- face_face_connectivity
- long name :
- Faces that neighbor each face.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
Array Chunk Bytes 1.88 GiB 1.88 GiB Shape (41943042, 6) (41943042, 6) Dask graph 1 chunks in 17 graph layers Data type int64 numpy.ndarray
- face_areas(n_face)float32dask.array<chunksize=(41943042,), meta=np.ndarray>
- cf_role :
- face_areas
- long_name :
- Area of each face.
Array Chunk Bytes 160.00 MiB 160.00 MiB Shape (41943042,) (41943042,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_face_distances(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- cf_role :
- edge_face_distances
- long_name :
- Distances between the face centers that saddle each edge
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray - edge_node_distances(n_edge)float32dask.array<chunksize=(125829120,), meta=np.ndarray>
- cf_role :
- edge_node_distances
- long_name :
- Distances between the nodes that make up each edge.
Array Chunk Bytes 480.00 MiB 480.00 MiB Shape (125829120,) (125829120,) Dask graph 1 chunks in 2 graph layers Data type float32 numpy.ndarray
- model_name :
- mpas
- core_name :
- init_atmosphere
- source :
- MPAS
- Conventions :
- MPAS
- git_version :
- v6.0-dirty
- on_a_sphere :
- YES
- sphere_radius :
- 6371229.0
- is_periodic :
- NO
- x_period :
- 0.0
- y_period :
- 0.0
- history :
- mpirun -n 2304 ./init_atmosphere_model
- parent_id :
- rwws7w16u3
- mesh_spec :
- 0.0
- config_init_case :
- 7
- config_calendar_type :
- gregorian
- config_start_time :
- 2016-08-01_00:00:00
- config_stop_time :
- 2016-09-10_00:00:00
- config_theta_adv_order :
- 3
- config_coef_3rd_order :
- 0.25
- config_num_halos :
- 2
- config_nvertlevels :
- 75
- config_nsoillevels :
- 4
- config_nfglevels :
- 38
- config_nfgsoillevels :
- 4
- config_months :
- 12
- config_geog_data_path :
- /glade/p_old/work/wrfhelp/WPS_GEOG/
- config_met_prefix :
- FILE
- config_sfc_prefix :
- SST
- config_fg_interval :
- 86400
- config_landuse_data :
- USGS
- config_topo_data :
- GMTED2010
- config_use_spechumd :
- NO
- config_ztop :
- 40000.0
- config_nsmterrain :
- 1
- config_smooth_surfaces :
- YES
- config_dzmin :
- 0.3
- config_nsm :
- 30
- config_tc_vertical_grid :
- YES
- config_extrap_airtemp :
- linear
- config_static_interp :
- NO
- config_native_gwd_static :
- NO
- config_gwd_cell_scaling :
- 1.0
- config_vertical_grid :
- YES
- config_met_interp :
- YES
- config_input_sst :
- NO
- config_frac_seaice :
- YES
- config_pio_num_iotasks :
- 0
- config_pio_stride :
- 1
- config_block_decomp_file_prefix :
- x1.41943042.grid.graph.info.part.
- config_number_of_blocks :
- 0
- config_explicit_proc_decomp :
- NO
- config_proc_decomp_file_prefix :
- graph.info.part.
- file_id :
- 2oa2snclm9
- source_grid_spec :
- MPAS
Opening Multiple Data Files#
There may be times when the grid you are working with is small enough to load directly into memory, while other temporal or spatial dimensions in the dataset can benefit from chunking. In these cases, you can specify the chunk_grid=False
parameter to apply chunking only to the additional dimensions.
%%time
uxds = ux.open_mfdataset(
e3sm_grid_path,
e3sm_data_pattern,
# concatenate along this dimension
concat_dim="time",
# concatenate files in the order provided
combine="nested",
chunks={
"lev": 4,
},
parallel=True,
# eagerly load grid into memory
chunk_grid=False,
)
uxds
CPU times: user 19.6 s, sys: 437 ms, total: 20.1 s
Wall time: 17.1 s
<xarray.UxDataset> Size: 37GB Dimensions: (time: 72, n_face: 21600, lev: 72, ilev: 73, cosp_prs: 7, nbnd: 2, cosp_tau: 7, cosp_ht: 40, cosp_sr: 15, cosp_htmisr: 16, cosp_tau_modis: 7, cosp_reffice: 6, cosp_reffliq: 6, cosp_sza: 5, cosp_scol: 10) Coordinates: (12/13) * lev (lev) float64 576B 0.1238 0.1828 0.2699 ... 993.8 998.5 * ilev (ilev) float64 584B 0.1 0.1477 0.218 ... 997.0 1e+03 * cosp_prs (cosp_prs) float64 56B 9e+04 7.4e+04 ... 2.45e+04 9e+03 * cosp_tau (cosp_tau) float64 56B 0.15 0.8 2.45 ... 41.5 100.0 * cosp_scol (cosp_scol) int32 40B 1 2 3 4 5 6 7 8 9 10 * cosp_ht (cosp_ht) float64 320B 1.896e+04 1.848e+04 ... 240.0 ... ... * cosp_sza (cosp_sza) float64 40B 0.0 20.0 40.0 60.0 80.0 * cosp_htmisr (cosp_htmisr) float64 128B 0.0 250.0 ... 1.8e+04 * cosp_tau_modis (cosp_tau_modis) float64 56B 0.15 0.8 ... 41.5 100.0 * cosp_reffice (cosp_reffice) float64 48B 5e-06 1.5e-05 ... 7.5e-05 * cosp_reffliq (cosp_reffliq) float64 48B 4e-06 9e-06 ... 2.5e-05 * time (time) object 576B 0001-02-01 00:00:00 ... 0007-01-0... Dimensions without coordinates: n_face, nbnd Data variables: (12/471) lat (time, n_face) float64 12MB dask.array<chunksize=(1, 21600), meta=np.ndarray> lon (time, n_face) float64 12MB dask.array<chunksize=(1, 21600), meta=np.ndarray> area (time, n_face) float64 12MB dask.array<chunksize=(1, 21600), meta=np.ndarray> hyam (time, lev) float64 41kB dask.array<chunksize=(1, 4), meta=np.ndarray> hybm (time, lev) float64 41kB dask.array<chunksize=(1, 4), meta=np.ndarray> P0 (time) float64 576B 1e+05 1e+05 1e+05 ... 1e+05 1e+05 ... ... soa_c1DDF (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c1SFWET (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c2DDF (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c2SFWET (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c3DDF (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c3SFWET (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray>
<xarray.UxDataset> Size: 37GB Dimensions: (time: 72, n_face: 21600, lev: 72, ilev: 73, cosp_prs: 7, nbnd: 2, cosp_tau: 7, cosp_ht: 40, cosp_sr: 15, cosp_htmisr: 16, cosp_tau_modis: 7, cosp_reffice: 6, cosp_reffliq: 6, cosp_sza: 5, cosp_scol: 10) Coordinates: (12/13) * lev (lev) float64 576B 0.1238 0.1828 0.2699 ... 993.8 998.5 * ilev (ilev) float64 584B 0.1 0.1477 0.218 ... 997.0 1e+03 * cosp_prs (cosp_prs) float64 56B 9e+04 7.4e+04 ... 2.45e+04 9e+03 * cosp_tau (cosp_tau) float64 56B 0.15 0.8 2.45 ... 41.5 100.0 * cosp_scol (cosp_scol) int32 40B 1 2 3 4 5 6 7 8 9 10 * cosp_ht (cosp_ht) float64 320B 1.896e+04 1.848e+04 ... 240.0 ... ... * cosp_sza (cosp_sza) float64 40B 0.0 20.0 40.0 60.0 80.0 * cosp_htmisr (cosp_htmisr) float64 128B 0.0 250.0 ... 1.8e+04 * cosp_tau_modis (cosp_tau_modis) float64 56B 0.15 0.8 ... 41.5 100.0 * cosp_reffice (cosp_reffice) float64 48B 5e-06 1.5e-05 ... 7.5e-05 * cosp_reffliq (cosp_reffliq) float64 48B 4e-06 9e-06 ... 2.5e-05 * time (time) object 576B 0001-02-01 00:00:00 ... 0007-01-0... Dimensions without coordinates: n_face, nbnd Data variables: (12/471) lat (time, n_face) float64 12MB dask.array<chunksize=(1, 21600), meta=np.ndarray> lon (time, n_face) float64 12MB dask.array<chunksize=(1, 21600), meta=np.ndarray> area (time, n_face) float64 12MB dask.array<chunksize=(1, 21600), meta=np.ndarray> hyam (time, lev) float64 41kB dask.array<chunksize=(1, 4), meta=np.ndarray> hybm (time, lev) float64 41kB dask.array<chunksize=(1, 4), meta=np.ndarray> P0 (time) float64 576B 1e+05 1e+05 1e+05 ... 1e+05 1e+05 ... ... soa_c1DDF (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c1SFWET (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c2DDF (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c2SFWET (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c3DDF (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray> soa_c3SFWET (time, n_face) float32 6MB dask.array<chunksize=(1, 21600), meta=np.ndarray>
- time: 72
- n_face: 21600
- lev: 72
- ilev: 73
- cosp_prs: 7
- nbnd: 2
- cosp_tau: 7
- cosp_ht: 40
- cosp_sr: 15
- cosp_htmisr: 16
- cosp_tau_modis: 7
- cosp_reffice: 6
- cosp_reffliq: 6
- cosp_sza: 5
- cosp_scol: 10
- lev(lev)float640.1238 0.1828 ... 993.8 998.5
- long_name :
- hybrid level at midpoints (1000*(A+B))
- units :
- hPa
- positive :
- down
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- formula_terms :
- a: hyam b: hybm p0: P0 ps: PS
array([1.238254e-01, 1.828292e-01, 2.699489e-01, 3.985817e-01, 5.885091e-01, 8.689386e-01, 1.282995e+00, 1.894352e+00, 2.797027e+00, 4.129833e+00, 5.968449e+00, 8.377404e+00, 1.147379e+01, 1.533394e+01, 1.999634e+01, 2.544470e+01, 3.159325e+01, 3.836628e+01, 4.567120e+01, 5.330956e+01, 6.101518e+01, 6.847639e+01, 7.535534e+01, 8.194628e+01, 8.891054e+01, 9.646667e+01, 1.046650e+02, 1.135600e+02, 1.232110e+02, 1.336822e+02, 1.450433e+02, 1.573699e+02, 1.707441e+02, 1.852549e+02, 2.009989e+02, 2.180810e+02, 2.366148e+02, 2.567237e+02, 2.785416e+02, 3.022136e+02, 3.278975e+02, 3.557641e+02, 3.859990e+02, 4.188035e+02, 4.543958e+02, 4.924686e+02, 5.316395e+02, 5.706249e+02, 6.086438e+02, 6.453200e+02, 6.804980e+02, 7.137046e+02, 7.444748e+02, 7.723628e+02, 7.969527e+02, 8.178688e+02, 8.350952e+02, 8.496612e+02, 8.631764e+02, 8.763706e+02, 8.892227e+02, 9.017118e+02, 9.138175e+02, 9.255197e+02, 9.367990e+02, 9.476362e+02, 9.580128e+02, 9.679111e+02, 9.773141e+02, 9.862053e+02, 9.937570e+02, 9.984964e+02])
- ilev(ilev)float640.1 0.1477 0.218 ... 997.0 1e+03
- long_name :
- hybrid level at interfaces (1000*(A+B))
- units :
- hPa
- positive :
- down
- standard_name :
- atmosphere_hybrid_sigma_pressure_coordinate
- formula_terms :
- a: hyai b: hybi p0: P0 ps: PS
array([1.000000e-01, 1.476508e-01, 2.180076e-01, 3.218901e-01, 4.752733e-01, 7.017450e-01, 1.036132e+00, 1.529858e+00, 2.258847e+00, 3.335207e+00, 4.924460e+00, 7.012439e+00, 9.742370e+00, 1.320520e+01, 1.746267e+01, 2.253000e+01, 2.835939e+01, 3.482711e+01, 4.190545e+01, 4.943694e+01, 5.718218e+01, 6.484818e+01, 7.210460e+01, 7.860608e+01, 8.528648e+01, 9.253461e+01, 1.003987e+02, 1.089312e+02, 1.181888e+02, 1.282332e+02, 1.391312e+02, 1.509554e+02, 1.637844e+02, 1.777038e+02, 1.928061e+02, 2.091918e+02, 2.269702e+02, 2.462594e+02, 2.671880e+02, 2.898952e+02, 3.145321e+02, 3.412629e+02, 3.702654e+02, 4.017327e+02, 4.358743e+02, 4.729174e+02, 5.120198e+02, 5.512593e+02, 5.899905e+02, 6.272970e+02, 6.633429e+02, 6.976532e+02, 7.297561e+02, 7.591936e+02, 7.855321e+02, 8.083734e+02, 8.273643e+02, 8.428261e+02, 8.564964e+02, 8.698564e+02, 8.828849e+02, 8.955606e+02, 9.078631e+02, 9.197720e+02, 9.312675e+02, 9.423305e+02, 9.529419e+02, 9.630837e+02, 9.727385e+02, 9.818896e+02, 9.905210e+02, 9.969929e+02, 1.000000e+03])
- cosp_prs(cosp_prs)float649e+04 7.4e+04 ... 2.45e+04 9e+03
- long_name :
- COSP Mean ISCCP pressure
- units :
- Pa
- bounds :
- cosp_prs_bnds
array([90000., 74000., 62000., 50000., 37500., 24500., 9000.])
- cosp_tau(cosp_tau)float640.15 0.8 2.45 6.5 16.2 41.5 100.0
- long_name :
- COSP Mean ISCCP optical depth
- units :
- 1
- bounds :
- cosp_tau_bnds
array([ 0.15 , 0.8 , 2.45 , 6.5 , 16.200001, 41.5 , 100. ])
- cosp_scol(cosp_scol)int321 2 3 4 5 6 7 8 9 10
- long_name :
- COSP subcolumn
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=int32)
- cosp_ht(cosp_ht)float641.896e+04 1.848e+04 ... 720.0 240.0
- long_name :
- COSP Mean Height for calipso and radar simulator outputs
- units :
- m
- bounds :
- cosp_ht_bnds
array([18960., 18480., 18000., 17520., 17040., 16560., 16080., 15600., 15120., 14640., 14160., 13680., 13200., 12720., 12240., 11760., 11280., 10800., 10320., 9840., 9360., 8880., 8400., 7920., 7440., 6960., 6480., 6000., 5520., 5040., 4560., 4080., 3600., 3120., 2640., 2160., 1680., 1200., 720., 240.])
- cosp_sr(cosp_sr)float64-0.495 0.605 2.1 ... 70.0 539.5
- long_name :
- COSP Mean Scattering Ratio for calipso simulator CFAD output
- units :
- 1
- bounds :
- cosp_sr_bnds
array([-4.950e-01, 6.050e-01, 2.100e+00, 4.000e+00, 6.000e+00, 8.500e+00, 1.250e+01, 1.750e+01, 2.250e+01, 2.750e+01, 3.500e+01, 4.500e+01, 5.500e+01, 7.000e+01, 5.395e+02])
- cosp_sza(cosp_sza)float640.0 20.0 40.0 60.0 80.0
- long_name :
- COSP Parasol SZA
- units :
- degrees
array([ 0., 20., 40., 60., 80.])
- cosp_htmisr(cosp_htmisr)float640.0 250.0 750.0 ... 1.6e+04 1.8e+04
- long_name :
- COSP MISR height
- units :
- m
- bounds :
- cosp_htmisr_bnds
array([ 0., 250., 750., 1250., 1750., 2250., 2750., 3500., 4500., 6000., 8000., 10000., 12000., 14500., 16000., 18000.])
- cosp_tau_modis(cosp_tau_modis)float640.15 0.8 2.45 6.5 16.2 41.5 100.0
- long_name :
- COSP Mean MODIS optical depth
- units :
- 1
- bounds :
- cosp_tau_modis_bnds
array([ 0.15 , 0.8 , 2.45 , 6.5 , 16.200001, 41.5 , 100. ])
- cosp_reffice(cosp_reffice)float645e-06 1.5e-05 ... 5e-05 7.5e-05
- long_name :
- COSP Mean MODIS effective radius (ice)
- units :
- m
- bounds :
- cosp_reffice_bnds
array([5.0e-06, 1.5e-05, 2.5e-05, 3.5e-05, 5.0e-05, 7.5e-05])
- cosp_reffliq(cosp_reffliq)float644e-06 9e-06 ... 1.75e-05 2.5e-05
- long_name :
- COSP Mean MODIS effective radius (liquid)
- units :
- m
- bounds :
- cosp_reffliq_bnds
array([4.00e-06, 9.00e-06, 1.15e-05, 1.40e-05, 1.75e-05, 2.50e-05])
- time(time)object0001-02-01 00:00:00 ... 0007-01-...
- long_name :
- time
- bounds :
- time_bnds
array([cftime.DatetimeNoLeap(1, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(1, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(2, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(3, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(4, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(5, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 1, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 2, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 3, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 4, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 5, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 6, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 7, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 8, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 9, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 10, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 11, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(6, 12, 1, 0, 0, 0, 0, has_year_zero=True), cftime.DatetimeNoLeap(7, 1, 1, 0, 0, 0, 0, has_year_zero=True)], dtype=object)
- lat(time, n_face)float64dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- latitude
- units :
- degrees_north
Array Chunk Bytes 11.87 MiB 168.75 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - lon(time, n_face)float64dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- longitude
- units :
- degrees_east
Array Chunk Bytes 11.87 MiB 168.75 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - area(time, n_face)float64dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- physics grid areas
Array Chunk Bytes 11.87 MiB 168.75 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - hyam(time, lev)float64dask.array<chunksize=(1, 4), meta=np.ndarray>
- long_name :
- hybrid A coefficient at layer midpoints
Array Chunk Bytes 40.50 kiB 32 B Shape (72, 72) (1, 4) Dask graph 1296 chunks in 217 graph layers Data type float64 numpy.ndarray - hybm(time, lev)float64dask.array<chunksize=(1, 4), meta=np.ndarray>
- long_name :
- hybrid B coefficient at layer midpoints
Array Chunk Bytes 40.50 kiB 32 B Shape (72, 72) (1, 4) Dask graph 1296 chunks in 217 graph layers Data type float64 numpy.ndarray - P0(time)float641e+05 1e+05 1e+05 ... 1e+05 1e+05
- long_name :
- reference pressure
- units :
- Pa
array([100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000., 100000.])
- hyai(time, ilev)float64dask.array<chunksize=(1, 73), meta=np.ndarray>
- long_name :
- hybrid A coefficient at layer interfaces
Array Chunk Bytes 41.06 kiB 584 B Shape (72, 73) (1, 73) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - hybi(time, ilev)float64dask.array<chunksize=(1, 73), meta=np.ndarray>
- long_name :
- hybrid B coefficient at layer interfaces
Array Chunk Bytes 41.06 kiB 584 B Shape (72, 73) (1, 73) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_prs_bnds(time, cosp_prs, nbnd)float64dask.array<chunksize=(1, 7, 2), meta=np.ndarray>
Array Chunk Bytes 7.88 kiB 112 B Shape (72, 7, 2) (1, 7, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_tau_bnds(time, cosp_tau, nbnd)float64dask.array<chunksize=(1, 7, 2), meta=np.ndarray>
Array Chunk Bytes 7.88 kiB 112 B Shape (72, 7, 2) (1, 7, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_ht_bnds(time, cosp_ht, nbnd)float64dask.array<chunksize=(1, 40, 2), meta=np.ndarray>
Array Chunk Bytes 45.00 kiB 640 B Shape (72, 40, 2) (1, 40, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_sr_bnds(time, cosp_sr, nbnd)float64dask.array<chunksize=(1, 15, 2), meta=np.ndarray>
Array Chunk Bytes 16.88 kiB 240 B Shape (72, 15, 2) (1, 15, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_htmisr_bnds(time, cosp_htmisr, nbnd)float64dask.array<chunksize=(1, 16, 2), meta=np.ndarray>
Array Chunk Bytes 18.00 kiB 256 B Shape (72, 16, 2) (1, 16, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_tau_modis_bnds(time, cosp_tau_modis, nbnd)float64dask.array<chunksize=(1, 7, 2), meta=np.ndarray>
Array Chunk Bytes 7.88 kiB 112 B Shape (72, 7, 2) (1, 7, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_reffice_bnds(time, cosp_reffice, nbnd)float64dask.array<chunksize=(1, 6, 2), meta=np.ndarray>
Array Chunk Bytes 6.75 kiB 96 B Shape (72, 6, 2) (1, 6, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - cosp_reffliq_bnds(time, cosp_reffliq, nbnd)float64dask.array<chunksize=(1, 6, 2), meta=np.ndarray>
Array Chunk Bytes 6.75 kiB 96 B Shape (72, 6, 2) (1, 6, 2) Dask graph 72 chunks in 217 graph layers Data type float64 numpy.ndarray - date(time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- current date (YYYYMMDD)
Array Chunk Bytes 288 B 4 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type int32 numpy.ndarray - datesec(time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- current seconds of current date
Array Chunk Bytes 288 B 4 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type int32 numpy.ndarray - time_bnds(time, nbnd)objectdask.array<chunksize=(1, 2), meta=np.ndarray>
- long_name :
- time interval endpoints
Array Chunk Bytes 1.12 kiB 16 B Shape (72, 2) (1, 2) Dask graph 72 chunks in 145 graph layers Data type object numpy.ndarray - date_written(time)|S8dask.array<chunksize=(1,), meta=np.ndarray>
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 217 graph layers Data type |S8 numpy.ndarray - time_written(time)|S8dask.array<chunksize=(1,), meta=np.ndarray>
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 217 graph layers Data type |S8 numpy.ndarray - ndbase(time)int320 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0
- long_name :
- base day
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)
- nsbase(time)int320 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0
- long_name :
- seconds of base day
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)
- nbdate(time)int3210101 10101 10101 ... 10101 10101
- long_name :
- base date (YYYYMMDD)
array([10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101, 10101], dtype=int32)
- nbsec(time)int320 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0
- long_name :
- seconds of base date
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)
- mdt(time)int321800 1800 1800 ... 1800 1800 1800
- long_name :
- timestep
- units :
- s
array([1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800], dtype=int32)
- ndcur(time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- current day (from base day)
Array Chunk Bytes 288 B 4 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type int32 numpy.ndarray - nscur(time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- current seconds of current day
Array Chunk Bytes 288 B 4 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type int32 numpy.ndarray - co2vmr(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- co2 volume mixing ratio
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - ch4vmr(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- ch4 volume mixing ratio
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - n2ovmr(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- n2o volume mixing ratio
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - f11vmr(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- f11 volume mixing ratio
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - f12vmr(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- f12 volume mixing ratio
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - sol_tsi(time)float64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- total solar irradiance
- units :
- W/m2
Array Chunk Bytes 576 B 8 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type float64 numpy.ndarray - nsteph(time)int32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- current timestep
Array Chunk Bytes 288 B 4 B Shape (72,) (1,) Dask graph 72 chunks in 145 graph layers Data type int32 numpy.ndarray - AEROD_v(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Total Aerosol Optical Depth in visible band
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ANRAIN(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m-3
- long_name :
- Average rain number conc
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - ANSNOW(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m-3
- long_name :
- Average snow number conc
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - AODABS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol absorption optical depth 550 nm
- standard_name :
- atmosphere_absorption_optical_thickness_due_to_ambient_aerosol_particles
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODABSBC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol absorption optical depth 550 nm from BC
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODALL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- AOD 550 nm for all time and species
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODBC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from BC
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODDUST(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from dust
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODDUST1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm model 1 from dust
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODDUST3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm model 3 from dust
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODDUST4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm model 4 from dust
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODMODE1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm mode 1
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODMODE2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm mode 2
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODMODE3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm mode 3
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODMODE4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm mode 4
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODNIR(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 850 nm
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODPOM(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from POM
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODSO4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from SO4
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODSOA(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from SOA
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODSS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm from seasalt
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODUV(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 350 nm
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AODVIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol optical depth 550 nm
- standard_name :
- atmosphere_optical_thickness_due_to_ambient_aerosol_particles
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQRAIN(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- Average rain mixing ratio
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - AQSNOW(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- Average snow mixing ratio
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_DMS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- DMS aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_H2O2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- H2O2 aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_H2SO4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- H2SO4 aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_O3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- O3 aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_SO2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- SO2 aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AQ_SOAG(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- SOAG aqueous chemistry (for gas species)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - AREI(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- Micron
- long_name :
- Average ice effective radius
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - AREL(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- Micron
- long_name :
- Average droplet effective radius
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - AWNC(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m-3
- long_name :
- Average cloud water number conc
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - AWNI(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m-3
- long_name :
- Average cloud ice number conc
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - BURDEN1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Aerosol burden mode 1
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - BURDEN2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Aerosol burden mode 2
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - BURDEN3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Aerosol burden mode 3
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - BURDEN4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Aerosol burden mode 4
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CCN3(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/cm3
- long_name :
- CCN concentration at S=0.1%
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - CDNUMC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2
- long_name :
- Vertically-integrated droplet concentration
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CFAD_SR532_CAL(time, cosp_ht, cosp_sr, n_face)float32dask.array<chunksize=(1, 40, 15, 21600), meta=np.ndarray>
- mdims :
- [7 6]
- units :
- 1
- long_name :
- Calipso Scattering Ratio CFAD (532 nm)
- cell_methods :
- time: mean
Array Chunk Bytes 3.48 GiB 49.44 MiB Shape (72, 40, 15, 21600) (1, 40, 15, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDHGH(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Vertically-integrated high cloud
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDHGH_CAL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso High-level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDHGH_CAL_ICE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso High-level Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDHGH_CAL_LIQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso High-level Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDHGH_CAL_UN(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso High-level Undefined-Phase Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDICE(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged cloud ice amount
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLIQ(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged cloud liquid amount
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLOW(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Vertically-integrated low cloud
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLOW_CAL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Low-level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLOW_CAL_ICE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Low-level Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLOW_CAL_LIQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Low-level Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDLOW_CAL_UN(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Low-level Undefined-Phase Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDMED(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Vertically-integrated mid-level cloud
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDMED_CAL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Mid-level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDMED_CAL_ICE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Mid-level Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDMED_CAL_LIQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Mid-level Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDMED_CAL_UN(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Mid-level Undefined-Phase Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Vertically-integrated total cloud
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT_CAL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Total Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT_CAL_ICE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Total Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT_CAL_LIQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Total Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT_CAL_UN(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Calipso Total Undefined-Phase Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLDTOT_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- percent
- long_name :
- Total Cloud Fraction Calculated by the ISCCP Simulator
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLD_CAL(time, cosp_ht, n_face)float32dask.array<chunksize=(1, 40, 21600), meta=np.ndarray>
- mdims :
- 6
- units :
- percent
- long_name :
- Calipso Cloud Fraction (532 nm)
- cell_methods :
- time: mean
Array Chunk Bytes 237.30 MiB 3.30 MiB Shape (72, 40, 21600) (1, 40, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLD_CAL_ICE(time, cosp_ht, n_face)float32dask.array<chunksize=(1, 40, 21600), meta=np.ndarray>
- mdims :
- 6
- units :
- percent
- long_name :
- Calipso Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 237.30 MiB 3.30 MiB Shape (72, 40, 21600) (1, 40, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLD_CAL_LIQ(time, cosp_ht, n_face)float32dask.array<chunksize=(1, 40, 21600), meta=np.ndarray>
- mdims :
- 6
- units :
- percent
- long_name :
- Calipso Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 237.30 MiB 3.30 MiB Shape (72, 40, 21600) (1, 40, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLD_CAL_UN(time, cosp_ht, n_face)float32dask.array<chunksize=(1, 40, 21600), meta=np.ndarray>
- mdims :
- 6
- units :
- percent
- long_name :
- Calipso Undefined-Phase Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 237.30 MiB 3.30 MiB Shape (72, 40, 21600) (1, 40, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLD_MISR(time, cosp_htmisr, cosp_tau, n_face)float32dask.array<chunksize=(1, 16, 7, 21600), meta=np.ndarray>
- mdims :
- [4 9]
- units :
- percent
- long_name :
- Cloud Fraction from MISR Simulator
- cell_methods :
- time: mean
Array Chunk Bytes 664.45 MiB 9.23 MiB Shape (72, 16, 7, 21600) (1, 16, 7, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLHMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS High Level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLIMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS Ice Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLLMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS Low Level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLMMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS Mid Level Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLMODIS(time, cosp_prs, cosp_tau_modis, n_face)float32dask.array<chunksize=(1, 7, 7, 21600), meta=np.ndarray>
- mdims :
- [10 3]
- units :
- %
- long_name :
- MODIS Cloud Area Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 290.70 MiB 4.04 MiB Shape (72, 7, 7, 21600) (1, 7, 7, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLOUD(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Cloud fraction
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - CLOUDFRAC_CLUBB(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - CLRIMODIS(time, cosp_reffice, cosp_tau_modis, n_face)float32dask.array<chunksize=(1, 6, 7, 21600), meta=np.ndarray>
- mdims :
- [10 11]
- units :
- %
- long_name :
- MODIS Cloud Area Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 249.17 MiB 3.46 MiB Shape (72, 6, 7, 21600) (1, 6, 7, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLRLMODIS(time, cosp_reffliq, cosp_tau_modis, n_face)float32dask.array<chunksize=(1, 6, 7, 21600), meta=np.ndarray>
- mdims :
- [10 12]
- units :
- %
- long_name :
- MODIS Cloud Area Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 249.17 MiB 3.46 MiB Shape (72, 6, 7, 21600) (1, 6, 7, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLTMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS Total Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CLWMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- %
- long_name :
- MODIS Liquid Cloud Fraction
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - CONCLD(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- fraction
- long_name :
- Convective cloud cover
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - DCQ(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg/s
- long_name :
- Q tendency due to moist processes
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_DMS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_H2O2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_H2SO4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_O3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_SO2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DF_SOAG(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dry deposition flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DMS_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mol/mol
- long_name :
- DMS in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DP_KCLDBASE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Deep conv. cloudbase level index
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DP_MFUP_MAX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Deep conv. column-max updraft mass flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DP_WCLDBASE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Deep conv. cloudbase vertical velocity
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DSTSFMBL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Mobilization flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DTCOND(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- K/s
- long_name :
- T tendency - moist processes
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - DTENDTH(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- W/m2
- long_name :
- Dynamic Tendency of Total (vertically integrated) moist static energy
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - DTENDTQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Dynamic Tendency of Total (vertically integrated) specific humidity
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - EXTINCT(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- /m
- long_name :
- Aerosol extinction
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - FICE(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Fractional ice content within cloud
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - FISCCP1_COSP(time, cosp_prs, cosp_tau, n_face)float32dask.array<chunksize=(1, 7, 7, 21600), meta=np.ndarray>
- mdims :
- [4 3]
- units :
- percent
- long_name :
- Grid-box fraction covered by each ISCCP D level cloud type
- cell_methods :
- time: mean
Array Chunk Bytes 290.70 MiB 4.04 MiB Shape (72, 7, 7, 21600) (1, 7, 7, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLDS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Downwelling longwave flux at surface
- standard_name :
- surface_downwelling_longwave_flux_in_air
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLNS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Net longwave flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLNSC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky net longwave flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLNT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Net longwave flux at top of model
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLNTC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky net longwave flux at top of model
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLUT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Upwelling longwave flux at top of model
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FLUTC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky upwelling longwave flux at top of model
- standard_name :
- toa_outgoing_longwave_flux_assuming_clear_sky
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FREQI(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Fractional occurrence of ice
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - FREQL(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Fractional occurrence of liquid
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - FREQR(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Fractional occurrence of rain
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - FREQS(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1
- long_name :
- Fractional occurrence of snow
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - FSDS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Downwelling solar flux at surface
- standard_name :
- surface_downwelling_shortwave_flux_in_air
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSDSC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky downwelling solar flux at surface
- standard_name :
- surface_downwelling_shortwave_flux_in_air_assuming_clear_sky
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Net solar flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNSC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky net solar flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Net solar flux at top of model
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNTC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky net solar flux at top of model
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNTOA(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Net solar flux at top of atmosphere
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSNTOAC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky net solar flux at top of atmosphere
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSUTOA(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Upwelling solar flux at top of atmosphere
- standard_name :
- toa_outgoing_shortwave_flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - FSUTOAC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Clearsky upwelling solar flux at top of atmosphere
- standard_name :
- toa_outgoing_shortwave_flux_assuming_clear_sky
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - F_eff(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Effective enrichment factor of marine organic matter
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - H2O2_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mol/mol
- long_name :
- H2O2 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - H2SO4_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mol/mol
- long_name :
- H2SO4 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - H2SO4_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- H2SO4 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ICEFRAC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Fraction of sfc area covered by sea-ice
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ICIMR(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- Prognostic in-cloud ice mixing ratio
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - ICWMR(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- Prognostic in-cloud water mixing ratio
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - IWC(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/m3
- long_name :
- Grid box average ice water content
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - IWPMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg m-2
- long_name :
- MODIS Cloud Ice Water Path*CLIMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LANDFRAC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Fraction of sfc area covered by land
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LHFLX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- W/m2
- long_name :
- Surface latent heat flux
- standard_name :
- surface_upward_latent_heat_flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_DO3(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/s
- long_name :
- ozone vmr tendency by linearized ozone chemistry
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_DO3_PSC(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/s
- long_name :
- ozone vmr loss by PSCs using Carille et al. (1990)
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_O3CLIM(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- mol/mol
- long_name :
- climatology of ozone in LINOZ
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_O3COL(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- DU
- long_name :
- ozone column above
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_SFCSINK(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Tg/yr/m2
- long_name :
- surface o3 sink in LINOZ with an e-fold to a fixed concentration
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_SSO3(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg
- long_name :
- steady state ozone in LINOZ
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - LINOZ_SZA(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- degrees
- long_name :
- solar zenith angle in LINOZ
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LND_MBL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Soil erodibility factor
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LWCF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Longwave cloud forcing
- standard_name :
- toa_longwave_cloud_radiative_effect
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - LWPMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg m-2
- long_name :
- MODIS Cloud Liquid Water Path*CLWMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - MEANCLDALB_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Mean cloud albedo*CLDTOT_ISCCP
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - MEANPTOP_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa
- long_name :
- Mean cloud top pressure*CLDTOT_ISCCP
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - MEANTAU_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Mean optical thickness*CLDTOT_ISCCP
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - MEANTBCLR_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- K
- long_name :
- Mean Clear-sky Infrared Tb from ISCCP simulator
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - MEANTB_ISCCP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- K
- long_name :
- Mean Infrared Tb from ISCCP simulator
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_bc(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of bc mass concentration bc_a1+bc_c1+bc_a3+bc_c3+bc_a4+bc_c4
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_dst(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of dst mass concentration dst_a1+dst_c1+dst_a3+dst_c3
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_mom(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of mom mass concentration mom_a1+mom_c1+mom_a2+mom_c2+mom_a3+mom_c3+mom_a4+mom_c4
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_ncl(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of ncl mass concentration ncl_a1+ncl_c1+ncl_a2+ncl_c2+ncl_a3+ncl_c3
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_pom(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of pom mass concentration pom_a1+pom_c1+pom_a3+pom_c3+pom_a4+pom_c4
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_so4(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of so4 mass concentration so4_a1+so4_c1+so4_a2+so4_c2+so4_a3+so4_c3
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - Mass_soa(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- long_name :
- sum of soa mass concentration soa_a1+soa_c1+soa_a2+soa_c2+soa_a3+soa_c3
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - NUMICE(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged cloud ice number
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - NUMLIQ(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged cloud liquid number
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - NUMRAI(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged rain number
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - NUMSNO(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- 1/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged snow number
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - O3(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- mol/mol
- mixing_ratio :
- dry
- long_name :
- O3 concentration
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - O3_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mol/mol
- long_name :
- O3 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - OCNFRAC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Fraction of sfc area covered by ocean
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - OMEGA(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- Pa/s
- long_name :
- Vertical velocity (pressure)
- standard_name :
- lagrangian_tendency_of_air_pressure
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - OMEGA500(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa/s
- long_name :
- Vertical velocity at 500 mbar pressure surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - OMEGAT(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- K Pa/s
- long_name :
- Vertical heat flux
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - PBLH(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m
- long_name :
- PBL height
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PCTMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa
- long_name :
- MODIS Cloud Top Pressure*CLTMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PHIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m2/s2
- long_name :
- Surface geopotential
- cell_methods :
- time: point
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PRECC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Convective precipitation rate (liq + ice)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PRECL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Large-scale (stable) precipitation rate (liq + ice)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PRECSC(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Convective snow rate (water equivalent)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PRECSL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Large-scale (stable) snow rate (water equivalent)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa
- long_name :
- Surface pressure
- standard_name :
- surface_air_pressure
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - PSL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa
- long_name :
- Sea level pressure
- standard_name :
- air_pressure_at_mean_sea_level
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - Q(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- mixing_ratio :
- wet
- long_name :
- Specific humidity
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - QFLX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Surface water flux
- standard_name :
- water_evapotranspiration_flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - QREFHT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- Reference height humidity
- standard_name :
- specific_humidity
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - QRL(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- Sampling_Sequence :
- rad_lwsw
- units :
- K/s
- long_name :
- Longwave heating rate
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - QRS(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- Sampling_Sequence :
- rad_lwsw
- units :
- K/s
- long_name :
- Solar heating rate
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - RAINQM(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged rain amount
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - RAM1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- frac
- long_name :
- RAM1
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - REFFCLIMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m
- long_name :
- MODIS Ice Cloud Particle Size*CLIMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - REFFCLWMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m
- long_name :
- MODIS Liquid Cloud Particle Size*CLWMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - RELHUM(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- percent
- long_name :
- Relative humidity
- standard_name :
- relative_humidity
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - RFL_PARASOL(time, cosp_sza, n_face)float32dask.array<chunksize=(1, 5, 21600), meta=np.ndarray>
- mdims :
- 8
- units :
- 1
- long_name :
- PARASOL-like mono-directional reflectance
- cell_methods :
- time: mean
Array Chunk Bytes 29.66 MiB 421.88 kiB Shape (72, 5, 21600) (1, 5, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SCO(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- DU
- long_name :
- Stratospheric column ozone based on chemistry tropopause
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFDMS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- DMS surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFH2O2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- H2O2 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFH2SO4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- H2SO4 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFO3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- O3 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFSO2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- SO2 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFSOAG(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- SOAG surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFbc_a1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_a1 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFbc_a3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_a3 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFbc_a4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_a4 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFdst_a1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dst_a1 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFdst_a3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dst_a3 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFmom_a1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a1 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFmom_a2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a2 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFmom_a3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a3 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFmom_a4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a4 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFncl_a1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_a1 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFncl_a2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_a2 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFncl_a3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_a3 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFnum_a1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_a1 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFnum_a2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_a2 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFnum_a3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_a3 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFnum_a4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_a4 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFpom_a1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_a1 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFpom_a3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_a3 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFpom_a4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_a4 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFso4_a1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_a1 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFso4_a2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_a2 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFso4_a3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_a3 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFsoa_a1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_a1 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFsoa_a2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_a2 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SFsoa_a3(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_a3 surface flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SHFLX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- W/m2
- long_name :
- Surface sensible heat flux
- standard_name :
- surface_upward_sensible_heat_flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SH_KCLDBASE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- Shallow conv. cloudbase level index
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SH_MFUP_MAX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Shallow conv. column-max updraft mass flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SH_WCLDBASE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- Shallow conv. cloudbase vertical velocity
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SNOWHICE(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m
- long_name :
- Snow depth over ice
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SNOWHLND(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m
- long_name :
- Water equivalent snow depth
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SNOWQM(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- kg/kg
- mixing_ratio :
- wet
- long_name :
- Grid box averaged snow amount
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - SO2(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- mol/mol
- mixing_ratio :
- dry
- long_name :
- SO2 concentration
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - SO2_CLXF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- molec/cm2/s
- long_name :
- vertically intergrated external forcing for SO2
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SO2_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mol/mol
- long_name :
- SO2 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SOAG_CLXF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- molec/cm2/s
- long_name :
- vertically intergrated external forcing for SOAG
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SOAG_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mol/mol
- long_name :
- SOAG in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SOAG_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- SOAG gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SOLIN(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Solar insolation
- standard_name :
- toa_incoming_shortwave_flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SSAVIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- long_name :
- Aerosol singel-scatter albedo
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SSTSFMBL(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Mobilization flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SSTSFMBL_OM(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Mobilization flux of marine organic matter at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - SWCF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- Sampling_Sequence :
- rad_lwsw
- units :
- W/m2
- long_name :
- Shortwave cloud forcing
- standard_name :
- toa_shortwave_cloud_radiative_effect
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - T(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- K
- long_name :
- Temperature
- standard_name :
- air_temperature
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - TAUGWX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- N/m2
- long_name :
- Zonal gravity wave surface stress
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TAUGWY(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- N/m2
- long_name :
- Meridional gravity wave surface stress
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TAUILOGMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- MODIS Ice Cloud Optical Thickness (Log10 Mean)*CLIMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TAUIMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- MODIS Ice Cloud Optical Thickness*CLIMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TAUTLOGMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- MODIS Total Cloud Optical Thickness (Log10 Mean)*CLTMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TAUTMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- MODIS Total Cloud Optical Thickness*CLTMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TAUWLOGMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- MODIS Liquid Cloud Optical Thickness (Log10 Mean)*CLWMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TAUWMODIS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1
- long_name :
- MODIS Liquid Cloud Optical Thickness*CLWMODIS
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TAUX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- N/m2
- long_name :
- Zonal surface stress
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TAUY(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- N/m2
- long_name :
- Meridional surface stress
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TCO(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- DU
- long_name :
- Tropospheric column ozone based on chemistry tropopause
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TGCLDCWP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Total grid-box cloud water path (liquid and ice)
- standard_name :
- atmosphere_mass_content_of_cloud_condensed_water
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TGCLDIWP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Total grid-box cloud ice water path
- standard_name :
- atmosphere_mass_content_of_cloud_ice
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TGCLDLWP(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Total grid-box cloud liquid water path
- standard_name :
- atmosphere_mass_content_of_cloud_liquid_water
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TH7001000(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- K
- long_name :
- Theta difference 700 mb - 1000 mb
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TMQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2
- long_name :
- Total (vertically integrated) precipitable water
- standard_name :
- atmosphere_mass_content_of_water_vapor
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TREFHT(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- K
- long_name :
- Reference height temperature
- standard_name :
- air_temperature
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TROP_P(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- Pa
- long_name :
- Tropopause Pressure
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TROP_T(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- K
- long_name :
- Tropopause Temperature
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TS(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- K
- long_name :
- Surface temperature (radiative)
- standard_name :
- surface_temperature
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TSMN(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- K
- long_name :
- Minimum surface temperature over output period
- cell_methods :
- time: minimum
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TSMX(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- K
- long_name :
- Maximum surface temperature over output period
- cell_methods :
- time: maximum
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TUH(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- W/m
- long_name :
- Total (vertically integrated) zonal MSE flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TUQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m/s
- long_name :
- Total (vertically integrated) zonal water flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TVH(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- W/m
- long_name :
- Total (vertically integrated) meridional MSE flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - TVQ(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m/s
- long_name :
- Total (vertically integrated) meridional water flux
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - U(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m/s
- long_name :
- Zonal wind
- standard_name :
- eastward_wind
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - U10(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- m/s
- long_name :
- 10m wind speed
- standard_name :
- wind_speed
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - UU(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m2/s2
- long_name :
- Zonal velocity squared
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - V(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m/s
- long_name :
- Meridional wind
- standard_name :
- northward_wind
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - VQ(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m/s kg/kg
- long_name :
- Meridional water transport
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - VT(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- K m/s
- long_name :
- Meridional heat transport
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - VU(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m2/s2
- long_name :
- Meridional flux of zonal momentum
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - VV(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m2/s2
- long_name :
- Meridional velocity squared
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - WD_H2O2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/s
- long_name :
- H2O2 wet deposition
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - WD_H2SO4(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/s
- long_name :
- H2SO4 wet deposition
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - WD_SO2(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/s
- long_name :
- SO2 wet deposition
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - WSUB(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m/s
- long_name :
- Diagnostic sub-grid vertical velocity
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - Z3(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m
- long_name :
- Geopotential Height (above sea level)
- standard_name :
- geopotential_height
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - aero_water(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- m
- long_name :
- sum of aerosol water of interstitial modes wat_a1+wat_a2+wat_a3+wat_a4
- cell_methods :
- time: mean
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - airFV(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- frac
- long_name :
- FV
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_a1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a1_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- bc_a1 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a1_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_a1 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_a3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a3_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- bc_a3 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a4DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_a4 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a4SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a4_CLXF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- molec/cm2/s
- long_name :
- vertically intergrated external forcing for bc_a4
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a4_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- bc_a4 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_a4_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_a4 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_c1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_c1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_c1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_c1 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_c3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_c3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_c3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_c3 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_c4DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_c4 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - bc_c4SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- bc_c4 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - chla(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- mg L-1
- long_name :
- ocean input data: chla
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_a1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dst_a1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_a1SF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dst_a1 dust surface emission
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_a1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_a1_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- dst_a1 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_a3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dst_a3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_a3SF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dst_a3 dust surface emission
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_a3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_a3_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- dst_a3 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_c1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dst_c1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_c1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dst_c1 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_c3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dst_c3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - dst_c3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- dst_c3 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - hstobie_linoz(time, lev, n_face)float32dask.array<chunksize=(1, 4, 21600), meta=np.ndarray>
- mdims :
- 1
- units :
- fraction of model time
- long_name :
- Lowest possible Linoz level
- cell_methods :
- time: point
Array Chunk Bytes 427.15 MiB 337.50 kiB Shape (72, 72, 21600) (1, 4, 21600) Dask graph 1296 chunks in 145 graph layers Data type float32 numpy.ndarray - mlip(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- uM C
- long_name :
- ocean input data: mlip
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a1SF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a1 seasalt surface emission
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a1_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- mom_a1 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a1_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a1 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a2DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a2 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a2SF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a2 seasalt surface emission
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a2SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a2_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- mom_a2 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a3_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- mom_a3 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a4DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a4 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a4SF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a4 seasalt surface emission
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a4SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a4_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- mom_a4 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_a4_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_a4 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_c1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_c1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_c1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_c1 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_c2DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_c2 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_c2SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_c2 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_c3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_c3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_c3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_c3 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_c4DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_c4 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mom_c4SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- mom_c4 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mpoly(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- uM C
- long_name :
- ocean input data: mpoly
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - mprot(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- uM C
- long_name :
- ocean input data: mprot
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_a1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a1SF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_a1 seasalt surface emission
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a1_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- ncl_a1 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a2DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_a2 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a2SF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_a2 seasalt surface emission
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a2SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a2_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- ncl_a2 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_a3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a3SF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_a3 seasalt surface emission
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_a3_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- ncl_a3 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_c1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_c1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_c1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_c1 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_c2DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_c2 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_c2SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_c2 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_c3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_c3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - ncl_c3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- ncl_c3 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_a1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a1SF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- num_a1 dust surface emission
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a1_CLXF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- molec/cm2/s
- long_name :
- vertically intergrated external forcing for num_a1
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a1_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/kg
- long_name :
- num_a1 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a1_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- num_a1 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a2DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_a2 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a2SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a2_CLXF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- molec/cm2/s
- long_name :
- vertically intergrated external forcing for num_a2
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a2_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/kg
- long_name :
- num_a2 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_a3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a3SF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- num_a3 dust surface emission
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a3_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/kg
- long_name :
- num_a3 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a4DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_a4 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a4SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a4_CLXF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- molec/cm2/s
- long_name :
- vertically intergrated external forcing for num_a4
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a4_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/kg
- long_name :
- num_a4 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_a4_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- num_a4 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_c1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_c1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_c1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_c1 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_c2DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_c2 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_c2SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_c2 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_c3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_c3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_c3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_c3 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_c4DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_c4 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - num_c4SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- 1/m2/s
- long_name :
- num_c4 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_a1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a1_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- pom_a1 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a1_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_a1 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_a3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a3_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- pom_a3 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a4DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_a4 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a4SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a4_CLXF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- molec/cm2/s
- long_name :
- vertically intergrated external forcing for pom_a4
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a4_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- pom_a4 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_a4_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_a4 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_c1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_c1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_c1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_c1 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_c3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_c3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_c3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_c3 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_c4DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_c4 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - pom_c4SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- pom_c4 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_a1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a1_CLXF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- molec/cm2/s
- long_name :
- vertically intergrated external forcing for so4_a1
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a1_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- so4_a1 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a1_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_a1 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a2DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_a2 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a2SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a2_CLXF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- molec/cm2/s
- long_name :
- vertically intergrated external forcing for so4_a2
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a2_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- so4_a2 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a2_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_a2 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_a3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a3_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- so4_a3 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_a3_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_a3 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_c1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_c1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_c1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_c1 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_c2DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_c2 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_c2SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_c2 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_c3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_c3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - so4_c3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- so4_c3 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_a1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a1_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- soa_a1 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a1_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_a1 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a2DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_a2 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a2SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a2_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- soa_a2 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a2_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_a2 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_a3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- Wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a3_SRF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/kg
- long_name :
- soa_a3 in bottom layer
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_a3_sfgaex1(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_a3 gas-aerosol-exchange primary column tendency
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_c1DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_c1 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_c1SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_c1 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_c2DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_c2 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_c2SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_c2 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_c3DDF(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_c3 dry deposition flux at bottom (grav + turb)
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray - soa_c3SFWET(time, n_face)float32dask.array<chunksize=(1, 21600), meta=np.ndarray>
- units :
- kg/m2/s
- long_name :
- soa_c3 wet deposition flux at surface
- cell_methods :
- time: mean
Array Chunk Bytes 5.93 MiB 84.38 kiB Shape (72, 21600) (1, 21600) Dask graph 72 chunks in 145 graph layers Data type float32 numpy.ndarray
- levPandasIndex
PandasIndex(Index([0.12382541305561677, 0.18282923550684863, 0.26994886212093744, 0.39858170362288226, 0.5885091465647531, 0.8689385700405001, 1.282994908254925, 1.8943524794063875, 2.797026935293259, 4.129833155024836, 5.968449367118077, 8.37740437894177, 11.473787230534558, 15.333938222216858, 19.996337978167073, 25.444696509961595, 31.59325129128525, 38.36628309442701, 45.671197939426804, 53.309561434392535, 61.01518167036946, 68.47639022971255, 75.35533589726099, 81.94627512473471, 88.91054314956091, 96.46667344493704, 104.66496728675462, 113.56000142146327, 123.210991427466, 133.6821799321061, 145.04326553270042, 157.36987784007928, 170.74407952158202, 185.2549022291512, 200.99893987110397, 218.0809970330008, 236.61478658749036, 256.7236859052588, 278.54155830983467, 302.2136401218828, 327.89750608917024, 355.76412943838017, 385.99902391991094, 418.8034628792632, 454.3958139891781, 492.46857402252704, 531.639531357463, 570.6249031033329, 608.6437744215841, 645.3199679615716, 680.49804443824, 713.7046383204336, 744.4748293231951, 772.3628379433543, 796.952749718736, 817.8688234772361, 835.0951708866112, 849.6612491105949, 863.1764256493401, 876.3706483341047, 889.2227360962712, 901.7118332902197, 913.817504420407, 925.519748147335, 936.7989948227038, 947.6361588543765, 958.0127663713389, 967.9110804007753, 977.314063869485, 986.2053331610676, 993.7569563042222, 998.4964394917621], dtype='float64', name='lev'))
- ilevPandasIndex
PandasIndex(Index([0.10000000319754362, 0.14765082291368947, 0.21800764810000778, 0.32189007614186715, 0.47527333110389736, 0.7017449620256088, 1.0361321780553923, 1.5298576384544575, 2.2588473203583175, 3.3352065502282007, 4.924459759821471, 7.012438974414682, 9.742369783468858, 13.205204677600257, 17.46267176683346, 22.530004189500687, 28.359388830422507, 34.82711375214799, 41.90545243670603, 49.436943442147566, 57.182179426637504, 64.84818391410143, 72.10459654532369, 78.60607524919826, 85.28647500027114, 92.53461129885065, 100.39873559102345, 108.93119898248581, 118.18880386044077, 128.23317899449125, 139.13118086972102, 150.95535019567978, 163.78440548447873, 177.70375355868535, 192.80605089961705, 209.19182884259095, 226.97016522341073, 246.25940795156995, 267.1879638589476, 289.8951527607217, 314.53212748304384, 341.2628846952966, 370.2653741814638, 401.73267365835795, 435.8742521001685, 472.9173758781876, 512.0197721668665, 551.2592905480594, 589.9905156586062, 627.2970331845617, 663.3429027385811, 697.6531861378987, 729.7560905029684, 759.1935681434217, 785.5321077432867, 808.3733916941852, 827.364255260287, 842.8260865129353, 856.4964117082548, 869.8564395904256, 882.8848570777836, 895.5606151147587, 907.8630514656808, 919.771957375133, 931.2675389195371, 942.3304507258706, 952.941866982882, 963.0836657597957, 972.738495041755, 981.8896326972151, 990.52103362492, 996.9928789835244, 1000.0], dtype='float64', name='ilev'))
- cosp_prsPandasIndex
PandasIndex(Index([90000.0, 74000.0, 62000.0, 50000.0, 37500.0, 24500.0, 9000.0], dtype='float64', name='cosp_prs'))
- cosp_tauPandasIndex
PandasIndex(Index([0.15000000596046448, 0.800000011920929, 2.450000047683716, 6.5, 16.200000762939453, 41.5, 100.0], dtype='float64', name='cosp_tau'))
- cosp_scolPandasIndex
PandasIndex(Index([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype='int32', name='cosp_scol'))
- cosp_htPandasIndex
PandasIndex(Index([18960.0, 18480.0, 18000.0, 17520.0, 17040.0, 16560.0, 16080.0, 15600.0, 15120.0, 14640.0, 14160.0, 13680.0, 13200.0, 12720.0, 12240.0, 11760.0, 11280.0, 10800.0, 10320.0, 9840.0, 9360.0, 8880.0, 8400.0, 7920.0, 7440.0, 6960.0, 6480.0, 6000.0, 5520.0, 5040.0, 4560.0, 4080.0, 3600.0, 3120.0, 2640.0, 2160.0, 1680.0, 1200.0, 720.0, 240.0], dtype='float64', name='cosp_ht'))
- cosp_srPandasIndex
PandasIndex(Index([-0.4950000001117587, 0.6050000237300992, 2.100000023841858, 4.0, 6.0, 8.5, 12.5, 17.5, 22.5, 27.5, 35.0, 45.0, 55.0, 70.0, 539.5], dtype='float64', name='cosp_sr'))
- cosp_szaPandasIndex
PandasIndex(Index([0.0, 20.0, 40.0, 60.0, 80.0], dtype='float64', name='cosp_sza'))
- cosp_htmisrPandasIndex
PandasIndex(Index([ 0.0, 250.0, 750.0, 1250.0, 1750.0, 2250.0, 2750.0, 3500.0, 4500.0, 6000.0, 8000.0, 10000.0, 12000.0, 14500.0, 16000.0, 18000.0], dtype='float64', name='cosp_htmisr'))
- cosp_tau_modisPandasIndex
PandasIndex(Index([0.15000000596046448, 0.800000011920929, 2.450000047683716, 6.5, 16.200000762939453, 41.5, 100.0], dtype='float64', name='cosp_tau_modis'))
- cosp_refficePandasIndex
PandasIndex(Index([ 4.999999873689376e-06, 1.4999999621068127e-05, 2.499999936844688e-05, 3.499999911582563e-05, 4.999999873689376e-05, 7.499999992433004e-05], dtype='float64', name='cosp_reffice'))
- cosp_reffliqPandasIndex
PandasIndex(Index([ 3.999999989900971e-06, 8.999999863590347e-06, 1.1499999800435035e-05, 1.3999999737279722e-05, 1.7499999557912815e-05, 2.499999936844688e-05], dtype='float64', name='cosp_reffliq'))
- timePandasIndex
PandasIndex(CFTimeIndex([0001-02-01 00:00:00, 0001-03-01 00:00:00, 0001-04-01 00:00:00, 0001-05-01 00:00:00, 0001-06-01 00:00:00, 0001-07-01 00:00:00, 0001-08-01 00:00:00, 0001-09-01 00:00:00, 0001-10-01 00:00:00, 0001-11-01 00:00:00, 0001-12-01 00:00:00, 0002-01-01 00:00:00, 0002-02-01 00:00:00, 0002-03-01 00:00:00, 0002-04-01 00:00:00, 0002-05-01 00:00:00, 0002-06-01 00:00:00, 0002-07-01 00:00:00, 0002-08-01 00:00:00, 0002-09-01 00:00:00, 0002-10-01 00:00:00, 0002-11-01 00:00:00, 0002-12-01 00:00:00, 0003-01-01 00:00:00, 0003-02-01 00:00:00, 0003-03-01 00:00:00, 0003-04-01 00:00:00, 0003-05-01 00:00:00, 0003-06-01 00:00:00, 0003-07-01 00:00:00, 0003-08-01 00:00:00, 0003-09-01 00:00:00, 0003-10-01 00:00:00, 0003-11-01 00:00:00, 0003-12-01 00:00:00, 0004-01-01 00:00:00, 0004-02-01 00:00:00, 0004-03-01 00:00:00, 0004-04-01 00:00:00, 0004-05-01 00:00:00, 0004-06-01 00:00:00, 0004-07-01 00:00:00, 0004-08-01 00:00:00, 0004-09-01 00:00:00, 0004-10-01 00:00:00, 0004-11-01 00:00:00, 0004-12-01 00:00:00, 0005-01-01 00:00:00, 0005-02-01 00:00:00, 0005-03-01 00:00:00, 0005-04-01 00:00:00, 0005-05-01 00:00:00, 0005-06-01 00:00:00, 0005-07-01 00:00:00, 0005-08-01 00:00:00, 0005-09-01 00:00:00, 0005-10-01 00:00:00, 0005-11-01 00:00:00, 0005-12-01 00:00:00, 0006-01-01 00:00:00, 0006-02-01 00:00:00, 0006-03-01 00:00:00, 0006-04-01 00:00:00, 0006-05-01 00:00:00, 0006-06-01 00:00:00, 0006-07-01 00:00:00, 0006-08-01 00:00:00, 0006-09-01 00:00:00, 0006-10-01 00:00:00, 0006-11-01 00:00:00, 0006-12-01 00:00:00, 0007-01-01 00:00:00], dtype='object', length=72, calendar='noleap', freq='MS'))
Show Grid Information
<uxarray.Grid> Original Grid Type: Scrip Grid Dimensions: * n_node: 21727 * n_face: 21600 * n_max_face_nodes: 4 Grid Coordinates (Spherical): * node_lon: (21727,) * node_lat: (21727,) * face_lon: (21600,) * face_lat: (21600,) Grid Coordinates (Cartesian): Grid Connectivity Variables: * face_node_connectivity: (21600, 4) Grid Descriptor Variables:
- n_node: 21727
- n_face: 21600
- n_max_face_nodes: 4
- node_lon(n_node)float64-13.99 -162.6 ... 7.501 -70.49
array([ -13.99008839, -162.58266108, 169.4998277 , ..., -52.65889312, 7.50105101, -70.49382509])
- node_lat(n_node)float6483.82 -48.17 8.852 ... -26.8 41.81
- standard_name :
- latitude
- long name :
- Latitude of the corner nodes of each face
- units :
- degrees_north
array([ 83.81798421, -48.16622403, 8.85169568, ..., 55.66687829, -26.80131559, 41.8149156 ])
- face_lon(n_face)float64-44.26 -42.76 ... 136.5 135.0
array([-44.25928396, -42.75932668, -44.25864811, ..., 133.49916029, 136.50083971, 135. ])
- face_lat(n_face)float64-34.91 -35.58 ... 36.66 35.97
- standard_name :
- latitude
- long name :
- Latitude of the center of each face
- units :
- degrees_north
array([-34.91143916, -35.58196515, -33.51497835, ..., 36.66411307, 36.66411307, 35.96577012])
- face_node_connectivity(n_face, n_max_face_nodes)int6414044 20513 13015 ... 20725 275
- cf_role :
- face_node_connectivity
- long name :
- Maps every face to its corner nodes.
- start_index :
- 0
- _FillValue :
- -9223372036854775808
array([[14044, 20513, 13015, 8295], [20513, 13714, 136, 13015], [ 8295, 13015, 6578, 8173], ..., [19795, 7895, 1341, 445], [19416, 445, 275, 5359], [ 445, 1341, 20725, 275]])
- source_grid_spec :
- Scrip
Cleanup#
Always remember to shut down the Dask cluster when you’re done!
client.shutdown()